Author: Kai Lai Chung
Publisher: World Scientific
ISBN: 9789810225339
Category : Science
Languages : en
Pages : 124
Book Description
This volume shows modern probabilistic methods in action: Brownian Motion Process as applied to the electrical phenomena investigated by Green et al., beginning with the Newton-Coulomb potential and ending with solutions by first and last exits of Brownian paths from conductors.
Green, Brown, and Probability
Author: Kai Lai Chung
Publisher: World Scientific
ISBN: 9789810225339
Category : Science
Languages : en
Pages : 124
Book Description
This volume shows modern probabilistic methods in action: Brownian Motion Process as applied to the electrical phenomena investigated by Green et al., beginning with the Newton-Coulomb potential and ending with solutions by first and last exits of Brownian paths from conductors.
Publisher: World Scientific
ISBN: 9789810225339
Category : Science
Languages : en
Pages : 124
Book Description
This volume shows modern probabilistic methods in action: Brownian Motion Process as applied to the electrical phenomena investigated by Green et al., beginning with the Newton-Coulomb potential and ending with solutions by first and last exits of Brownian paths from conductors.
Green, Brown, and Probability & Brownian Motion on the Line
Author: Kai Lai Chung
Publisher: World Scientific
ISBN: 9789810246907
Category : Mathematics
Languages : en
Pages : 184
Book Description
This invaluable book consists of two parts. Part I is the second edition of the author's widely acclaimed publication Green, Brown, and Probability, which first appeared in 1995. In this exposition the author reveals, from a historical perspective, the beautiful relations between the Brownian motion process in probability theory and two important aspects of the theory of partial differential equations initiated from the problems in electricity ? Green's formula for solving the boundary value problem of Laplace equations and the Newton-Coulomb potential.Part II of the book comprises lecture notes based on a short course on ?Brownian Motion on the Line? which the author has given to graduate students at Stanford University. It emphasizes the methodology of Brownian motion in the relatively simple case of one-dimensional space. Numerous exercises are included.
Publisher: World Scientific
ISBN: 9789810246907
Category : Mathematics
Languages : en
Pages : 184
Book Description
This invaluable book consists of two parts. Part I is the second edition of the author's widely acclaimed publication Green, Brown, and Probability, which first appeared in 1995. In this exposition the author reveals, from a historical perspective, the beautiful relations between the Brownian motion process in probability theory and two important aspects of the theory of partial differential equations initiated from the problems in electricity ? Green's formula for solving the boundary value problem of Laplace equations and the Newton-Coulomb potential.Part II of the book comprises lecture notes based on a short course on ?Brownian Motion on the Line? which the author has given to graduate students at Stanford University. It emphasizes the methodology of Brownian motion in the relatively simple case of one-dimensional space. Numerous exercises are included.
Green, Brown, And Probability And Brownian Motion On The Line
Author: Kai Lai Chung
Publisher: World Scientific Publishing Company
ISBN: 9813102527
Category : Mathematics
Languages : en
Pages : 188
Book Description
This invaluable book consists of two parts. Part I is the second edition of the author's widely acclaimed publication Green, Brown, and Probability, which first appeared in 1995. In this exposition the author reveals, from a historical perspective, the beautiful relations between the Brownian motion process in probability theory and two important aspects of the theory of partial differential equations initiated from the problems in electricity — Green's formula for solving the boundary value problem of Laplace equations and the Newton-Coulomb potential.Part II of the book comprises lecture notes based on a short course on “Brownian Motion on the Line” which the author has given to graduate students at Stanford University. It emphasizes the methodology of Brownian motion in the relatively simple case of one-dimensional space. Numerous exercises are included.
Publisher: World Scientific Publishing Company
ISBN: 9813102527
Category : Mathematics
Languages : en
Pages : 188
Book Description
This invaluable book consists of two parts. Part I is the second edition of the author's widely acclaimed publication Green, Brown, and Probability, which first appeared in 1995. In this exposition the author reveals, from a historical perspective, the beautiful relations between the Brownian motion process in probability theory and two important aspects of the theory of partial differential equations initiated from the problems in electricity — Green's formula for solving the boundary value problem of Laplace equations and the Newton-Coulomb potential.Part II of the book comprises lecture notes based on a short course on “Brownian Motion on the Line” which the author has given to graduate students at Stanford University. It emphasizes the methodology of Brownian motion in the relatively simple case of one-dimensional space. Numerous exercises are included.
Introduction to Probability
Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
The Practice of Statistics
Author: Dan Yates
Publisher: Macmillan
ISBN: 9780716747734
Category : Mathematics
Languages : en
Pages : 936
Book Description
Combining the strength of the data analysis approach and the power of technology, the new edition features powerful and helpful new media supplements, enhanced teacher support materials, and full integration of the TI-83 and TI-89 graphing calculators.
Publisher: Macmillan
ISBN: 9780716747734
Category : Mathematics
Languages : en
Pages : 936
Book Description
Combining the strength of the data analysis approach and the power of technology, the new edition features powerful and helpful new media supplements, enhanced teacher support materials, and full integration of the TI-83 and TI-89 graphing calculators.
Brownian Motion
Author: Peter Mörters
Publisher: Cambridge University Press
ISBN: 1139486578
Category : Mathematics
Languages : en
Pages :
Book Description
This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.
Publisher: Cambridge University Press
ISBN: 1139486578
Category : Mathematics
Languages : en
Pages :
Book Description
This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.
Teaching Probability
Author: Jenny Gage
Publisher: Cambridge University Press
ISBN: 1316605892
Category : Education
Languages : en
Pages : 209
Book Description
These titles focus on the approaches that can be taken in the classroom to develop skills and a conceptual understanding of specific mathematical concepts.
Publisher: Cambridge University Press
ISBN: 1316605892
Category : Education
Languages : en
Pages : 209
Book Description
These titles focus on the approaches that can be taken in the classroom to develop skills and a conceptual understanding of specific mathematical concepts.
Lectures from Markov Processes to Brownian Motion
Author: Kai Lai Chung
Publisher: Springer Science & Business Media
ISBN: 1475717768
Category : Mathematics
Languages : en
Pages : 248
Book Description
This book evolved from several stacks of lecture notes written over a decade and given in classes at slightly varying levels. In transforming the over lapping material into a book, I aimed at presenting some of the best features of the subject with a minimum of prerequisities and technicalities. (Needless to say, one man's technicality is another's professionalism. ) But a text frozen in print does not allow for the latitude of the classroom; and the tendency to expand becomes harder to curb without the constraints of time and audience. The result is that this volume contains more topics and details than I had intended, but I hope the forest is still visible with the trees. The book begins at the beginning with the Markov property, followed quickly by the introduction of option al times and martingales. These three topics in the discrete parameter setting are fully discussed in my book A Course In Probability Theory (second edition, Academic Press, 1974). The latter will be referred to throughout this book as the Course, and may be considered as a general background; its specific use is limited to the mate rial on discrete parameter martingale theory cited in § 1. 4. Apart from this and some dispensable references to Markov chains as examples, the book is self-contained.
Publisher: Springer Science & Business Media
ISBN: 1475717768
Category : Mathematics
Languages : en
Pages : 248
Book Description
This book evolved from several stacks of lecture notes written over a decade and given in classes at slightly varying levels. In transforming the over lapping material into a book, I aimed at presenting some of the best features of the subject with a minimum of prerequisities and technicalities. (Needless to say, one man's technicality is another's professionalism. ) But a text frozen in print does not allow for the latitude of the classroom; and the tendency to expand becomes harder to curb without the constraints of time and audience. The result is that this volume contains more topics and details than I had intended, but I hope the forest is still visible with the trees. The book begins at the beginning with the Markov property, followed quickly by the introduction of option al times and martingales. These three topics in the discrete parameter setting are fully discussed in my book A Course In Probability Theory (second edition, Academic Press, 1974). The latter will be referred to throughout this book as the Course, and may be considered as a general background; its specific use is limited to the mate rial on discrete parameter martingale theory cited in § 1. 4. Apart from this and some dispensable references to Markov chains as examples, the book is self-contained.
Probability Theory
Author:
Publisher: Allied Publishers
ISBN: 9788177644517
Category :
Languages : en
Pages : 436
Book Description
Probability theory
Publisher: Allied Publishers
ISBN: 9788177644517
Category :
Languages : en
Pages : 436
Book Description
Probability theory
An Introduction to Optimization with Applications in Machine Learning and Data Analytics
Author: Jeffrey Paul Wheeler
Publisher: CRC Press
ISBN: 1003803598
Category : Mathematics
Languages : en
Pages : 475
Book Description
The primary goal of this text is a practical one. Equipping students with enough knowledge and creating an independent research platform, the author strives to prepare students for professional careers. Providing students with a marketable skill set requires topics from many areas of optimization. The initial goal of this text is to develop a marketable skill set for mathematics majors as well as for students of engineering, computer science, economics, statistics, and business. Optimization reaches into many different fields. This text provides a balance where one is needed. Mathematics optimization books are often too heavy on theory without enough applications; texts aimed at business students are often strong on applications, but weak on math. The book represents an attempt at overcoming this imbalance for all students taking such a course. The book contains many practical applications but also explains the mathematics behind the techniques, including stating definitions and proving theorems. Optimization techniques are at the heart of the first spam filters, are used in self-driving cars, play a great role in machine learning, and can be used in such places as determining a batting order in a Major League Baseball game. Additionally, optimization has seemingly limitless other applications in business and industry. In short, knowledge of this subject offers an individual both a very marketable skill set for a wealth of jobs as well as useful tools for research in many academic disciplines. Many of the problems rely on using a computer. Microsoft’s Excel is most often used, as this is common in business, but Python and other languages are considered. The consideration of other programming languages permits experienced mathematics and engineering students to use MATLAB® or Mathematica, and the computer science students to write their own programs in Java or Python.
Publisher: CRC Press
ISBN: 1003803598
Category : Mathematics
Languages : en
Pages : 475
Book Description
The primary goal of this text is a practical one. Equipping students with enough knowledge and creating an independent research platform, the author strives to prepare students for professional careers. Providing students with a marketable skill set requires topics from many areas of optimization. The initial goal of this text is to develop a marketable skill set for mathematics majors as well as for students of engineering, computer science, economics, statistics, and business. Optimization reaches into many different fields. This text provides a balance where one is needed. Mathematics optimization books are often too heavy on theory without enough applications; texts aimed at business students are often strong on applications, but weak on math. The book represents an attempt at overcoming this imbalance for all students taking such a course. The book contains many practical applications but also explains the mathematics behind the techniques, including stating definitions and proving theorems. Optimization techniques are at the heart of the first spam filters, are used in self-driving cars, play a great role in machine learning, and can be used in such places as determining a batting order in a Major League Baseball game. Additionally, optimization has seemingly limitless other applications in business and industry. In short, knowledge of this subject offers an individual both a very marketable skill set for a wealth of jobs as well as useful tools for research in many academic disciplines. Many of the problems rely on using a computer. Microsoft’s Excel is most often used, as this is common in business, but Python and other languages are considered. The consideration of other programming languages permits experienced mathematics and engineering students to use MATLAB® or Mathematica, and the computer science students to write their own programs in Java or Python.