Author: Jie Sun
Publisher: MDPI
ISBN: 3039362046
Category : Technology & Engineering
Languages : en
Pages : 92
Book Description
Graphene is probably the most fascinating material discovered in this century. A group of 2D materials can be called graphene derivatives, and these have attracted tremendous interest. This includes materials that are one or a few atoms thick. They have outstanding optical/electrical properties, and, most importantly, they are flat and thin—they can be processed with existing semiconductor technologies. Therefore, they have great potential in nanoelectronics and optoelectronics, playing a revolutionary role in these fields via their integration with other bulk materials. Of course, there are still challenges, such as large-scale production, as well as the mechanical transfer of these atomically thin sheets. These are the fields where scientists are now actively doing research. In this book, some leading scientists in the area share their most recent results on the material growth, device physics/processing, and system integration of 2D materials and devices. This book can serve as a starting point for young students to get familiar with the field, and should also be valuable to established device physicists and engineers who would like to explore the potential applications of 2D materials in electronics.
Graphene and other Two-dimensional Materials in Nanoelectronics and Optoelectronics
Author: Jie Sun
Publisher: MDPI
ISBN: 3039362046
Category : Technology & Engineering
Languages : en
Pages : 92
Book Description
Graphene is probably the most fascinating material discovered in this century. A group of 2D materials can be called graphene derivatives, and these have attracted tremendous interest. This includes materials that are one or a few atoms thick. They have outstanding optical/electrical properties, and, most importantly, they are flat and thin—they can be processed with existing semiconductor technologies. Therefore, they have great potential in nanoelectronics and optoelectronics, playing a revolutionary role in these fields via their integration with other bulk materials. Of course, there are still challenges, such as large-scale production, as well as the mechanical transfer of these atomically thin sheets. These are the fields where scientists are now actively doing research. In this book, some leading scientists in the area share their most recent results on the material growth, device physics/processing, and system integration of 2D materials and devices. This book can serve as a starting point for young students to get familiar with the field, and should also be valuable to established device physicists and engineers who would like to explore the potential applications of 2D materials in electronics.
Publisher: MDPI
ISBN: 3039362046
Category : Technology & Engineering
Languages : en
Pages : 92
Book Description
Graphene is probably the most fascinating material discovered in this century. A group of 2D materials can be called graphene derivatives, and these have attracted tremendous interest. This includes materials that are one or a few atoms thick. They have outstanding optical/electrical properties, and, most importantly, they are flat and thin—they can be processed with existing semiconductor technologies. Therefore, they have great potential in nanoelectronics and optoelectronics, playing a revolutionary role in these fields via their integration with other bulk materials. Of course, there are still challenges, such as large-scale production, as well as the mechanical transfer of these atomically thin sheets. These are the fields where scientists are now actively doing research. In this book, some leading scientists in the area share their most recent results on the material growth, device physics/processing, and system integration of 2D materials and devices. This book can serve as a starting point for young students to get familiar with the field, and should also be valuable to established device physicists and engineers who would like to explore the potential applications of 2D materials in electronics.
2D Materials for Nanoelectronics
Author: Michel Houssa
Publisher: CRC Press
ISBN: 1498704182
Category : Science
Languages : en
Pages : 472
Book Description
Major developments in the semiconductor industry are on the horizon through the use of two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, for integrated circuits (ICs). 2D Materials for Nanoelectronics is the first comprehensive treatment of these materials and their applications in nanoelectronic devices.Compris
Publisher: CRC Press
ISBN: 1498704182
Category : Science
Languages : en
Pages : 472
Book Description
Major developments in the semiconductor industry are on the horizon through the use of two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, for integrated circuits (ICs). 2D Materials for Nanoelectronics is the first comprehensive treatment of these materials and their applications in nanoelectronic devices.Compris
Two-dimensional Materials
Author: Pramoda Kumar Nayak
Publisher: BoD – Books on Demand
ISBN: 9535125540
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.
Publisher: BoD – Books on Demand
ISBN: 9535125540
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.
2D Materials
Author: Phaedon Avouris
Publisher: Cambridge University Press
ISBN: 1316738132
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.
Publisher: Cambridge University Press
ISBN: 1316738132
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.
2D Nanoelectronics
Author: Mircea Dragoman
Publisher: Springer
ISBN: 3319484370
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
This book is dedicated to the new two-dimensional one-atomic-layer-thick materials such as graphene, metallic chalcogenides, silicene and other 2D materials. The book describes their main physical properties and applications in nanoelctronics, photonics, sensing and computing. A large part of the book deals with graphene and its amazing physical properties. Another important part of the book deals with semiconductor monolayers such as MoS2 with impressive applications in photonics, and electronics. Silicene and germanene are the atom-thick counterparts of silicon and germanium with impressive applications in electronics and photonics which are still unexplored. Consideration of two-dimensional electron gas devices conclude the treatment. The physics of 2DEG is explained in detail and the applications in THz and IR region are discussed. Both authors are working currently on these 2D materials developing theory and applications.
Publisher: Springer
ISBN: 3319484370
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
This book is dedicated to the new two-dimensional one-atomic-layer-thick materials such as graphene, metallic chalcogenides, silicene and other 2D materials. The book describes their main physical properties and applications in nanoelctronics, photonics, sensing and computing. A large part of the book deals with graphene and its amazing physical properties. Another important part of the book deals with semiconductor monolayers such as MoS2 with impressive applications in photonics, and electronics. Silicene and germanene are the atom-thick counterparts of silicon and germanium with impressive applications in electronics and photonics which are still unexplored. Consideration of two-dimensional electron gas devices conclude the treatment. The physics of 2DEG is explained in detail and the applications in THz and IR region are discussed. Both authors are working currently on these 2D materials developing theory and applications.
2D Monoelemental Materials (Xenes) and Related Technologies
Author: Zongyu Huang
Publisher: CRC Press
ISBN: 1000562840
Category : Science
Languages : en
Pages : 166
Book Description
Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.
Publisher: CRC Press
ISBN: 1000562840
Category : Science
Languages : en
Pages : 166
Book Description
Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.
Two-Dimensional Nanostructures for Biomedical Technology
Author: Raju Khan
Publisher: Elsevier
ISBN: 0128176512
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
Two Dimensional Nanostructures for Biomedical Technology: A Bridge between Materials Science and Bioengineering helps researchers to understand the promising aspects of two dimensional nanomaterials. Sections cover the biomedical applications of such nanostructures in terms of their precursors, structures, morphology and size. Further, detailed synthetic methodologies guide the reader towards the efficient generation of two dimensional nanostructures. The book encompasses the vital aspects of two dimensional nanomaterials in context of their utility in biomedical technology, thus presenting a thorough guide for researchers in this area. - Details the latest on the structure, morphology and shape-size accords of two dimensional nanomaterials - Includes synthetic strategies with feasibility for sustainability - Reports on two dimensional nanostructures in biomedical technology, including bio-imaging, biosensing, drug delivery and tissue engineering
Publisher: Elsevier
ISBN: 0128176512
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
Two Dimensional Nanostructures for Biomedical Technology: A Bridge between Materials Science and Bioengineering helps researchers to understand the promising aspects of two dimensional nanomaterials. Sections cover the biomedical applications of such nanostructures in terms of their precursors, structures, morphology and size. Further, detailed synthetic methodologies guide the reader towards the efficient generation of two dimensional nanostructures. The book encompasses the vital aspects of two dimensional nanomaterials in context of their utility in biomedical technology, thus presenting a thorough guide for researchers in this area. - Details the latest on the structure, morphology and shape-size accords of two dimensional nanomaterials - Includes synthetic strategies with feasibility for sustainability - Reports on two dimensional nanostructures in biomedical technology, including bio-imaging, biosensing, drug delivery and tissue engineering
2D Materials for Nanophotonics
Author: Young Min Jhon
Publisher: Elsevier
ISBN: 0128186585
Category : Technology & Engineering
Languages : en
Pages : 412
Book Description
2D Materials for Nanophotonics presents a detailed overview of the applications of 2D materials for nanophotonics, covering the photonic properties of a range of 2D materials including graphene, 2D phosphorene and MXenes, and discussing applications in lighting and energy storage. This comprehensive reference is ideal for readers seeking a detailed and critical analysis of how 2D materials are being used for a range of photonic and optical applications.
Publisher: Elsevier
ISBN: 0128186585
Category : Technology & Engineering
Languages : en
Pages : 412
Book Description
2D Materials for Nanophotonics presents a detailed overview of the applications of 2D materials for nanophotonics, covering the photonic properties of a range of 2D materials including graphene, 2D phosphorene and MXenes, and discussing applications in lighting and energy storage. This comprehensive reference is ideal for readers seeking a detailed and critical analysis of how 2D materials are being used for a range of photonic and optical applications.
Integration of 2D Materials for Electronics Applications
Author: Filippo Giannazzo
Publisher: MDPI
ISBN: 3038976067
Category : Science
Languages : en
Pages : 265
Book Description
This book is a printed edition of the Special Issue "Integration of 2D Materials for Electronics Applications" that was published in Crystals
Publisher: MDPI
ISBN: 3038976067
Category : Science
Languages : en
Pages : 265
Book Description
This book is a printed edition of the Special Issue "Integration of 2D Materials for Electronics Applications" that was published in Crystals
Two-Dimensional Transition-Metal Dichalcogenides
Author: Alexander V. Kolobov
Publisher: Springer
ISBN: 3319314505
Category : Technology & Engineering
Languages : en
Pages : 545
Book Description
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.
Publisher: Springer
ISBN: 3319314505
Category : Technology & Engineering
Languages : en
Pages : 545
Book Description
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.