GRADIENT PROJECTION METHOD FOR CONSTRAINED OPTIMIZATION.

GRADIENT PROJECTION METHOD FOR CONSTRAINED OPTIMIZATION. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

GRADIENT PROJECTION METHOD FOR CONSTRAINED OPTIMIZATION.

GRADIENT PROJECTION METHOD FOR CONSTRAINED OPTIMIZATION. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Practical Methods of Optimization

Practical Methods of Optimization PDF Author: R. Fletcher
Publisher: John Wiley & Sons
ISBN: 111872318X
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
Fully describes optimization methods that are currently most valuable in solving real-life problems. Since optimization has applications in almost every branch of science and technology, the text emphasizes their practical aspects in conjunction with the heuristics useful in making them perform more reliably and efficiently. To this end, it presents comparative numerical studies to give readers a feel for possibile applications and to illustrate the problems in assessing evidence. Also provides theoretical background which provides insights into how methods are derived. This edition offers revised coverage of basic theory and standard techniques, with updated discussions of line search methods, Newton and quasi-Newton methods, and conjugate direction methods, as well as a comprehensive treatment of restricted step or trust region methods not commonly found in the literature. Also includes recent developments in hybrid methods for nonlinear least squares; an extended discussion of linear programming, with new methods for stable updating of LU factors; and a completely new section on network programming. Chapters include computer subroutines, worked examples, and study questions.

Linear Algebra and Optimization for Machine Learning

Linear Algebra and Optimization for Machine Learning PDF Author: Charu C. Aggarwal
Publisher: Springer Nature
ISBN: 3030403440
Category : Computers
Languages : en
Pages : 507

Get Book Here

Book Description
This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.

Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods

Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods PDF Author: Masao Fukushima
Publisher: Springer Science & Business Media
ISBN: 9780792353201
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
The concept of `reformulation' has long played an important role in mathematical programming. A classical example is the penalization technique in constrained optimization. More recent trends consist of reformulation of various mathematical programming problems, including variational inequalities and complementarity problems, into equivalent systems of possibly nonsmooth, piecewise smooth or semismooth nonlinear equations, or equivalent unconstrained optimization problems that are usually differentiable, but in general not twice differentiable. The book is a collection of peer-reviewed papers that cover such diverse areas as linear and nonlinear complementarity problems, variational inequality problems, nonsmooth equations and nonsmooth optimization problems, economic and network equilibrium problems, semidefinite programming problems, maximal monotone operator problems, and mathematical programs with equilibrium constraints. The reader will be convinced that the concept of `reformulation' provides extremely useful tools for advancing the study of mathematical programming from both theoretical and practical aspects. Audience: This book is intended for students and researchers in optimization, mathematical programming, and operations research.

Optimization and Control with Applications

Optimization and Control with Applications PDF Author: Liqun Qi
Publisher: Springer Science & Business Media
ISBN: 0387242554
Category : Mathematics
Languages : en
Pages : 587

Get Book Here

Book Description
A collection of 28 refereed papers grouped according to four broad topics: duality and optimality conditions, optimization algorithms, optimal control, and variational inequality and equilibrium problems. Suitable for researchers, practitioners and postgrads.

Practical Mathematical Optimization

Practical Mathematical Optimization PDF Author: Jan Snyman
Publisher: Springer Science & Business Media
ISBN: 0387243496
Category : Mathematics
Languages : en
Pages : 271

Get Book Here

Book Description
This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form. It enables professionals to apply optimization theory to engineering, physics, chemistry, or business economics.

A Scaled Gradient Projection Method for Large Scale Optimization

A Scaled Gradient Projection Method for Large Scale Optimization PDF Author: Gerard G. L. Meyer
Publisher:
ISBN:
Category : Control theory
Languages : en
Pages : 26

Get Book Here

Book Description
Abstract: "We propose a new parametrized gradient projection algorithm for solving constrained large scale optimization problems and, in particular, discrete optimal control problems with linear constraints. We demonstrate that an appropriate choice of parameters controls the behavior of the proposed algorithm between that of the well-known Frank-Wolfe and Rosen methods. We investigate the identification of those algorithm parameters that result in fast convergence to the solution by allowing many constraints to be added or dropped from the active set at each iteration. We show that an acceleration step based on the Fletcher-Reeves method can be easily added, and numerical results are provided for discrete optimal control problems with a large number (up to 10000) of control variables."

Proximal Algorithms

Proximal Algorithms PDF Author: Neal Parikh
Publisher: Now Pub
ISBN: 9781601987167
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
Proximal Algorithms discusses proximal operators and proximal algorithms, and illustrates their applicability to standard and distributed convex optimization in general and many applications of recent interest in particular. Much like Newton's method is a standard tool for solving unconstrained smooth optimization problems of modest size, proximal algorithms can be viewed as an analogous tool for nonsmooth, constrained, large-scale, or distributed versions of these problems. They are very generally applicable, but are especially well-suited to problems of substantial recent interest involving large or high-dimensional datasets. Proximal methods sit at a higher level of abstraction than classical algorithms like Newton's method: the base operation is evaluating the proximal operator of a function, which itself involves solving a small convex optimization problem. These subproblems, which generalize the problem of projecting a point onto a convex set, often admit closed-form solutions or can be solved very quickly with standard or simple specialized methods. Proximal Algorithms discusses different interpretations of proximal operators and algorithms, looks at their connections to many other topics in optimization and applied mathematics, surveys some popular algorithms, and provides a large number of examples of proximal operators that commonly arise in practice.

Gradient Methods for Large-scale Nonlinear Optimization

Gradient Methods for Large-scale Nonlinear Optimization PDF Author: Hongchao Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Finally, we propose a class of self-adaptive proximal point methods suitable for degenerate optimization problems where multiple minimizers may exist, or where the Hessian may be singular at a local minimizer. Two different acceptance criteria for an approximate solution to the proximal problem is analyzed and the convergence rate are analogous to those of exact iterates. The second part of this dissertation discusses using gradient methods to solve large-scale box constrained optimization. We first discuss the gradient projection methods. Then, an active set algorithm (ASA) for box constrained optimization is developed. The algorithm consists of a nonmonotone gradient projection step, an unconstrained optimization step, and a set of rules for branching between the two steps. Global convergence to a stationary point is established. Under the strong second-order sufficient optimality condition, without assuming strict complementarity, the algorithm eventually reduces to unconstrained optimization without restarts. For strongly convex quadratic box constrained optimization, ASA is shown to have finite convergence when a conjugate gradient method is used in the unconstrained optimization step. A specific implementation of ASA is given, which exploits the cyclic Barzilai-Borwein algorithm for the gradient projection step and CG_DESCENT for unconstrained optimization. Numerical experiments using the box constrained problems in the CUTEr and MINPACK test problem libraries show that this new algorithm outperforms benchmark softwares such as GENCAN, L-BFGS-B, and TRON.

Introduction to Optimization Methods

Introduction to Optimization Methods PDF Author: P. Adby
Publisher: Springer Science & Business Media
ISBN: 940095705X
Category : Science
Languages : en
Pages : 214

Get Book Here

Book Description
During the last decade the techniques of non-linear optim ization have emerged as an important subject for study and research. The increasingly widespread application of optim ization has been stimulated by the availability of digital computers, and the necessity of using them in the investigation of large systems. This book is an introduction to non-linear methods of optimization and is suitable for undergraduate and post graduate courses in mathematics, the physical and social sciences, and engineering. The first half of the book covers the basic optimization techniques including linear search methods, steepest descent, least squares, and the Newton-Raphson method. These are described in detail, with worked numerical examples, since they form the basis from which advanced methods are derived. Since 1965 advanced methods of unconstrained and constrained optimization have been developed to utilise the computational power of the digital computer. The second half of the book describes fully important algorithms in current use such as variable metric methods for unconstrained problems and penalty function methods for constrained problems. Recent work, much of which has not yet been widely applied, is reviewed and compared with currently popular techniques under a few generic main headings. vi PREFACE Chapter I describes the optimization problem in mathemat ical form and defines the terminology used in the remainder of the book. Chapter 2 is concerned with single variable optimization. The main algorithms of both search and approximation methods are developed in detail since they are an essential part of many multi-variable methods.