Global Regularity for the Yang-Mills Equations on High Dimensional Minkowski Space

Global Regularity for the Yang-Mills Equations on High Dimensional Minkowski Space PDF Author: Joachim Krieger
Publisher: American Mathematical Soc.
ISBN: 082184489X
Category : Mathematics
Languages : en
Pages : 111

Get Book Here

Book Description
This monograph contains a study of the global Cauchy problem for the Yang-Mills equations on $(6+1)$ and higher dimensional Minkowski space, when the initial data sets are small in the critical gauge covariant Sobolev space $\dot{H}_A^{(n-4)/{2}}$. Regularity is obtained through a certain ``microlocal geometric renormalization'' of the equations which is implemented via a family of approximate null Cronstrom gauge transformations. The argument is then reduced to controlling some degenerate elliptic equations in high index and non-isotropic $L^p$ spaces, and also proving some bilinear estimates in specially constructed square-function spaces.

Global Regularity for the Yang-Mills Equations on High Dimensional Minkowski Space

Global Regularity for the Yang-Mills Equations on High Dimensional Minkowski Space PDF Author: Joachim Krieger
Publisher: American Mathematical Soc.
ISBN: 082184489X
Category : Mathematics
Languages : en
Pages : 111

Get Book Here

Book Description
This monograph contains a study of the global Cauchy problem for the Yang-Mills equations on $(6+1)$ and higher dimensional Minkowski space, when the initial data sets are small in the critical gauge covariant Sobolev space $\dot{H}_A^{(n-4)/{2}}$. Regularity is obtained through a certain ``microlocal geometric renormalization'' of the equations which is implemented via a family of approximate null Cronstrom gauge transformations. The argument is then reduced to controlling some degenerate elliptic equations in high index and non-isotropic $L^p$ spaces, and also proving some bilinear estimates in specially constructed square-function spaces.

Global and Local Regularity of Fourier Integral Operators on Weighted and Unweighted Spaces

Global and Local Regularity of Fourier Integral Operators on Weighted and Unweighted Spaces PDF Author: David Dos Santos Ferreira
Publisher: American Mathematical Soc.
ISBN: 0821891197
Category : Mathematics
Languages : en
Pages : 86

Get Book Here

Book Description
The authors investigate the global continuity on spaces with of Fourier integral operators with smooth and rough amplitudes and/or phase functions subject to certain necessary non-degeneracy conditions. In this context they prove the optimal global boundedness result for Fourier integral operators with non-degenerate phase functions and the most general smooth Hörmander class amplitudes i.e. those in with . They also prove the very first results concerning the continuity of smooth and rough Fourier integral operators on weighted spaces, with and (i.e. the Muckenhoupt weights) for operators with rough and smooth amplitudes and phase functions satisfying a suitable rank condition.

On the Regularity of the Composition of Diffeomorphisms

On the Regularity of the Composition of Diffeomorphisms PDF Author: H. Inci
Publisher: American Mathematical Soc.
ISBN: 0821887416
Category : Mathematics
Languages : en
Pages : 72

Get Book Here

Book Description
For M a closed manifold or the Euclidean space Rn we present a detailed proof of regularity properties of the composition of Hs-regular diffeomorphisms of M for s > 12dim⁡M+1.

Relative Equilibria in the 3-Dimensional Curved $n$-Body Problem

Relative Equilibria in the 3-Dimensional Curved $n$-Body Problem PDF Author: Florin Diacu
Publisher: American Mathematical Soc.
ISBN: 0821891367
Category : Mathematics
Languages : en
Pages : 92

Get Book Here

Book Description
Considers the 3 -dimensional gravitational n -body problem, n32 , in spaces of constant Gaussian curvature k10 , i.e. on spheres S 3 ?1 , for ?>0 , and on hyperbolic manifolds H 3 ?1, for ?

Large Deviations for Additive Functionals of Markov Chains

Large Deviations for Additive Functionals of Markov Chains PDF Author: Alejandro D. de Acosta
Publisher: American Mathematical Soc.
ISBN: 0821890891
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description


Strange Attractors for Periodically Forced Parabolic Equations

Strange Attractors for Periodically Forced Parabolic Equations PDF Author: Kening Lu
Publisher: American Mathematical Soc.
ISBN: 0821884840
Category : Mathematics
Languages : en
Pages : 97

Get Book Here

Book Description
The authors prove that in systems undergoing Hopf bifurcations, the effects of periodic forcing can be amplified by the shearing in the system to create sustained chaotic behavior. Specifically, strange attractors with SRB measures are shown to exist. The analysis is carried out for infinite dimensional systems, and the results are applicable to partial differential equations. Application of the general results to a concrete equation, namely the Brusselator, is given.

The Sine-Gordon Equation in the Semiclassical Limit: Dynamics of Fluxon Condensates

The Sine-Gordon Equation in the Semiclassical Limit: Dynamics of Fluxon Condensates PDF Author: Robert J. Buckingham
Publisher: American Mathematical Soc.
ISBN: 0821885456
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
The authors study the Cauchy problem for the sine-Gordon equation in the semiclassical limit with pure-impulse initial data of sufficient strength to generate both high-frequency rotational motion near the peak of the impulse profile and also high-frequency librational motion in the tails. They show that for small times independent of the semiclassical scaling parameter, both types of motion are accurately described by explicit formulae involving elliptic functions. These formulae demonstrate consistency with predictions of Whitham's formal modulation theory in both the hyperbolic (modulationally stable) and elliptic (modulationally unstable) cases.

Weighted Bergman Spaces Induced by Rapidly Increasing Weights

Weighted Bergman Spaces Induced by Rapidly Increasing Weights PDF Author: Jose Angel Pelaez
Publisher: American Mathematical Soc.
ISBN: 0821888021
Category : Mathematics
Languages : en
Pages : 136

Get Book Here

Book Description
This monograph is devoted to the study of the weighted Bergman space $A^p_\omega$ of the unit disc $\mathbb{D}$ that is induced by a radial continuous weight $\omega$ satisfying $\lim_{r\to 1^-}\frac{\int_r^1\omega(s)\,ds}{\omega(r)(1-r)}=\infty.$ Every such $A^p_\omega$ lies between the Hardy space $H^p$ and every classical weighted Bergman space $A^p_\alpha$. Even if it is well known that $H^p$ is the limit of $A^p_\alpha$, as $\alpha\to-1$, in many respects, it is shown that $A^p_\omega$ lies ``closer'' to $H^p$ than any $A^p_\alpha$, and that several finer function-theoretic properties of $A^p_\alpha$ do not carry over to $A^p_\omega$.

A Complete Classification of the Isolated Singularities for Nonlinear Elliptic Equations with Inverse Square Potentials

A Complete Classification of the Isolated Singularities for Nonlinear Elliptic Equations with Inverse Square Potentials PDF Author: Florica C. Cîrstea
Publisher: American Mathematical Soc.
ISBN: 0821890220
Category : Mathematics
Languages : en
Pages : 97

Get Book Here

Book Description
In particular, for b = 1 and λ = 0, we find a sharp condition on h such that the origin is a removable singularity for all non-negative solutions of [[eqref]]one, thus addressing an open question of Vázquez and Véron.

On Some Aspects of Oscillation Theory and Geometry

On Some Aspects of Oscillation Theory and Geometry PDF Author: Bruno Bianchini
Publisher: American Mathematical Soc.
ISBN: 0821887998
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description
The aim of this paper is to analyze some of the relationships between oscillation theory for linear ordinary differential equations on the real line (shortly, ODE) and the geometry of complete Riemannian manifolds. With this motivation the authors prove some new results in both directions, ranging from oscillation and nonoscillation conditions for ODE's that improve on classical criteria, to estimates in the spectral theory of some geometric differential operator on Riemannian manifolds with related topological and geometric applications. To keep their investigation basically self-contained, the authors also collect some, more or less known, material which often appears in the literature in various forms and for which they give, in some instances, new proofs according to their specific point of view.