Gibbs Measures In Biology And Physics: The Potts Model

Gibbs Measures In Biology And Physics: The Potts Model PDF Author: Utkir A Rozikov
Publisher: World Scientific
ISBN: 9811251258
Category : Mathematics
Languages : en
Pages : 367

Get Book Here

Book Description
This book presents recently obtained mathematical results on Gibbs measures of the q-state Potts model on the integer lattice and on Cayley trees. It also illustrates many applications of the Potts model to real-world situations in biology, physics, financial engineering, medicine, and sociology, as well as in some examples of alloy behavior, cell sorting, flocking birds, flowing foams, and image segmentation.Gibbs measure is one of the important measures in various problems of probability theory and statistical mechanics. It is a measure associated with the Hamiltonian of a biological or physical system. Each Gibbs measure gives a state of the system.The main problem for a given Hamiltonian on a countable lattice is to describe all of its possible Gibbs measures. The existence of some values of parameters at which the uniqueness of Gibbs measure switches to non-uniqueness is interpreted as a phase transition.This book informs the reader about what has been (mathematically) done in the theory of Gibbs measures of the Potts model and the numerous applications of the Potts model. The main aim is to facilitate the readers (in mathematical biology, statistical physics, applied mathematics, probability and measure theory) to progress into an in-depth understanding by giving a systematic review of the theory of Gibbs measures of the Potts model and its applications.

Gibbs Measures In Biology And Physics: The Potts Model

Gibbs Measures In Biology And Physics: The Potts Model PDF Author: Utkir A Rozikov
Publisher: World Scientific
ISBN: 9811251258
Category : Mathematics
Languages : en
Pages : 367

Get Book Here

Book Description
This book presents recently obtained mathematical results on Gibbs measures of the q-state Potts model on the integer lattice and on Cayley trees. It also illustrates many applications of the Potts model to real-world situations in biology, physics, financial engineering, medicine, and sociology, as well as in some examples of alloy behavior, cell sorting, flocking birds, flowing foams, and image segmentation.Gibbs measure is one of the important measures in various problems of probability theory and statistical mechanics. It is a measure associated with the Hamiltonian of a biological or physical system. Each Gibbs measure gives a state of the system.The main problem for a given Hamiltonian on a countable lattice is to describe all of its possible Gibbs measures. The existence of some values of parameters at which the uniqueness of Gibbs measure switches to non-uniqueness is interpreted as a phase transition.This book informs the reader about what has been (mathematically) done in the theory of Gibbs measures of the Potts model and the numerous applications of the Potts model. The main aim is to facilitate the readers (in mathematical biology, statistical physics, applied mathematics, probability and measure theory) to progress into an in-depth understanding by giving a systematic review of the theory of Gibbs measures of the Potts model and its applications.

Gibbs Measures on Cayley Trees

Gibbs Measures on Cayley Trees PDF Author: Utkir A. Rozikov
Publisher: World Scientific
ISBN: 9814513385
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description
The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure associated with the Hamiltonian of a physical system (a model) and generalizes the notion of a canonical ensemble. More importantly, when the Hamiltonian can be written as a sum of parts, the Gibbs measure has the Markov property (a certain kind of statistical independence), thus leading to its widespread appearance in many problems outside of physics such as biology, Hopfield networks, Markov networks, and Markov logic networks. Moreover, the Gibbs measure is the unique measure that maximizes the entropy for a given expected energy. The method used for the description of Gibbs measures on Cayley trees is the method of Markov random field theory and recurrent equations of this theory, but the modern theory of Gibbs measures on trees uses new tools such as group theory, information flows on trees, node-weighted random walks, contour methods on trees, and nonlinear analysis. This book discusses all the mentioned methods, which were developed recently.

Graphs, Morphisms, and Statistical Physics

Graphs, Morphisms, and Statistical Physics PDF Author: Jaroslav Nešetřil
Publisher: American Mathematical Soc.
ISBN: 9780821871058
Category : Science
Languages : en
Pages : 220

Get Book Here

Book Description
The intersection of combinatorics and statistical physics has experienced great activity in recent years. This flurry of activity has been fertilized by an exchange not only of techniques, but also of objectives. Computer scientists interested in approximation algorithms have helped statistical physicists and discrete mathematicians overcome language problems. They have found a wealth of common ground in probabilistic combinatorics. Close connections between percolation and random graphs, graph morphisms and hard-constraint models, and slow mixing and phase transition have led to new results and perspectives. These connections can help in understanding typical behavior of combinatorial phenomena such as graph coloring and homomorphisms. Inspired by issues and intriguing new questions surrounding the interplay of combinatorics and statistical physics, a DIMACS/DIMATIA workshop was held at Rutgers University. These proceedings are the outgrowth of that meeting. This volume is intended for graduate students and research mathematicians interested in probabilistic graph theory and its applications.

Gibbs Measures On Cayley Trees

Gibbs Measures On Cayley Trees PDF Author: Utkir A Rozikov
Publisher: World Scientific
ISBN: 9814513393
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description
The purpose of this book is to present systematically all known mathematical results on Gibbs measures on Cayley trees (Bethe lattices).The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure associated with the Hamiltonian of a physical system (a model) and generalizes the notion of a canonical ensemble. More importantly, when the Hamiltonian can be written as a sum of parts, the Gibbs measure has the Markov property (a certain kind of statistical independence), thus leading to its widespread appearance in many problems outside of physics such as biology, Hopfield networks, Markov networks, and Markov logic networks. Moreover, the Gibbs measure is the unique measure that maximizes the entropy for a given expected energy.The method used for the description of Gibbs measures on Cayley trees is the method of Markov random field theory and recurrent equations of this theory, but the modern theory of Gibbs measures on trees uses new tools such as group theory, information flows on trees, node-weighted random walks, contour methods on trees, and nonlinear analysis. This book discusses all the mentioned methods, which were developed recently.

Phase Transitions: Mathematics, Physics, Biology... - Proceedings Of The Conference

Phase Transitions: Mathematics, Physics, Biology... - Proceedings Of The Conference PDF Author: Roman Kotecky
Publisher: World Scientific
ISBN: 981455264X
Category :
Languages : en
Pages : 274

Get Book Here

Book Description
This volume is dedicated to the theory of phase transitions and its interdisciplinary aspects. More specifically, the idea is to discuss the notion of the Gibbs state and its use (and limitations) in different applications.

Probability on Graphs

Probability on Graphs PDF Author: Geoffrey Grimmett
Publisher: Cambridge University Press
ISBN: 1108542999
Category : Mathematics
Languages : en
Pages : 279

Get Book Here

Book Description
This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

Spatial and Temporal Mixing of Gibbs Measures

Spatial and Temporal Mixing of Gibbs Measures PDF Author: Allan Murray Sly
Publisher:
ISBN:
Category :
Languages : en
Pages : 440

Get Book Here

Book Description


Statistical Mechanics

Statistical Mechanics PDF Author: James Sethna
Publisher: OUP Oxford
ISBN: 0191566217
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
In each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics - a field rooted in physics and chemistry whose ideas and methods are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe.

Algebraic Statistics for Computational Biology

Algebraic Statistics for Computational Biology PDF Author: L. Pachter
Publisher: Cambridge University Press
ISBN: 9780521857000
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.

Computational Statistical Physics

Computational Statistical Physics PDF Author: Lucas Böttcher
Publisher: Cambridge University Press
ISBN: 9781108841429
Category : Science
Languages : en
Pages : 275

Get Book Here

Book Description
Providing a detailed and pedagogical account of the rapidly-growing field of computational statistical physics, this book covers both the theoretical foundations of equilibrium and non-equilibrium statistical physics, and also modern, computational applications such as percolation, random walks, magnetic systems, machine learning dynamics, and spreading processes on complex networks. A detailed discussion of molecular dynamics simulations is also included, a topic of great importance in biophysics and physical chemistry. The accessible and self-contained approach adopted by the authors makes this book suitable for teaching courses at graduate level, and numerous worked examples and end of chapter problems allow students to test their progress and understanding.