Author: David Fisher
Publisher: University of Chicago Press
ISBN: 022680402X
Category : Mathematics
Languages : en
Pages : 573
Book Description
"Mathematicians David Fisher, Dmitry Kleinbock, and Gregory Soifer highlight in this edited collection the foundations and evolution of research by mathematician Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics. Margulis' ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. The broad goal of this volume is to introduce these areas, their development, their use in current research, and the connections between them. The foremost experts on the topic have written each of the chapters in this volume with a view to making them accessible by graduate students and by experts in other parts of mathematics"--
Dynamics, Geometry, Number Theory
Author: David Fisher
Publisher: University of Chicago Press
ISBN: 022680402X
Category : Mathematics
Languages : en
Pages : 573
Book Description
"Mathematicians David Fisher, Dmitry Kleinbock, and Gregory Soifer highlight in this edited collection the foundations and evolution of research by mathematician Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics. Margulis' ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. The broad goal of this volume is to introduce these areas, their development, their use in current research, and the connections between them. The foremost experts on the topic have written each of the chapters in this volume with a view to making them accessible by graduate students and by experts in other parts of mathematics"--
Publisher: University of Chicago Press
ISBN: 022680402X
Category : Mathematics
Languages : en
Pages : 573
Book Description
"Mathematicians David Fisher, Dmitry Kleinbock, and Gregory Soifer highlight in this edited collection the foundations and evolution of research by mathematician Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics. Margulis' ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. The broad goal of this volume is to introduce these areas, their development, their use in current research, and the connections between them. The foremost experts on the topic have written each of the chapters in this volume with a view to making them accessible by graduate students and by experts in other parts of mathematics"--
The Chern Symposium 1979
Author: W.-Y. Hsiang
Publisher: Springer Science & Business Media
ISBN: 1461381096
Category : Mathematics
Languages : en
Pages : 258
Book Description
This volume attests to the vitality of differential geometry as it probes deeper into its internal structure and explores ever widening connections with other subjects in mathematics and physics. To most of us Professor S. S. Chern is modern differential geometry, and we, his students, are grateful to him for leading us to this fertile landscape. The aims of the symposium were to review recent developments in geometry and to expose and explore new areas of research. It was our way of honoring Professor Chern upon the occasion of his official retirement as Professor of Mathematics at the University of California. This book is a record of the scientific events of the symposium and reflects Professor Chern's wide interest and influence. The conference also reflected Professor Chern's personality. It was a serious occasion, active yet relaxed, mixed with gentleness and good humor. We wish him good health, a long life, happiness, and a continuation of his extraordinarily deep and original contributions to mathematics. I. M. Singer Contents Real and Complex Geometry in Four Dimensions M. F. ATIYAH. . . . . . . . . . . . . Equivariant Morse Theory and the Yang-Mills Equation on Riemann Surfaces RAOUL BaTT .. 11 Isometric Families of Kahler Structures EUGENIO CALABI. . 23 Two Applications of Algebraic Geometry to Entire Holomorphic Mappings MARK GREEN AND PHILLIP GRIFFITHS. • . . . • . . 41 The Canonical Map for Certain Hilbert Modular Surfaces F. HIRZEBRUCH . . . . . • . . . . . . . . . 75 Tight Embeddings and Maps. Submanifolds of Geometrical Class Three in EN NICOLAAS H. KUIPER .
Publisher: Springer Science & Business Media
ISBN: 1461381096
Category : Mathematics
Languages : en
Pages : 258
Book Description
This volume attests to the vitality of differential geometry as it probes deeper into its internal structure and explores ever widening connections with other subjects in mathematics and physics. To most of us Professor S. S. Chern is modern differential geometry, and we, his students, are grateful to him for leading us to this fertile landscape. The aims of the symposium were to review recent developments in geometry and to expose and explore new areas of research. It was our way of honoring Professor Chern upon the occasion of his official retirement as Professor of Mathematics at the University of California. This book is a record of the scientific events of the symposium and reflects Professor Chern's wide interest and influence. The conference also reflected Professor Chern's personality. It was a serious occasion, active yet relaxed, mixed with gentleness and good humor. We wish him good health, a long life, happiness, and a continuation of his extraordinarily deep and original contributions to mathematics. I. M. Singer Contents Real and Complex Geometry in Four Dimensions M. F. ATIYAH. . . . . . . . . . . . . Equivariant Morse Theory and the Yang-Mills Equation on Riemann Surfaces RAOUL BaTT .. 11 Isometric Families of Kahler Structures EUGENIO CALABI. . 23 Two Applications of Algebraic Geometry to Entire Holomorphic Mappings MARK GREEN AND PHILLIP GRIFFITHS. • . . . • . . 41 The Canonical Map for Certain Hilbert Modular Surfaces F. HIRZEBRUCH . . . . . • . . . . . . . . . 75 Tight Embeddings and Maps. Submanifolds of Geometrical Class Three in EN NICOLAAS H. KUIPER .
Geometry, Spectral Theory, Groups, and Dynamics
Author: Robert Brooks
Publisher: American Mathematical Soc.
ISBN: 0821837109
Category : Mathematics
Languages : en
Pages : 298
Book Description
This volume contains articles based on talks given at the Robert Brooks Memorial Conference on Geometry and Spectral Theory and the Workshop on Groups, Geometry and Dynamics held at Technion - the Israel Institute of Technology (Haifa). Robert Brooks' (1952 - 2002) broad range of mathematical interests is represented in the volume, which is devoted to various aspects of global analysis, spectral theory, the theory of Riemann surfaces, Riemannian and discrete geometry, and numbertheory. A survey of Brooks' work has been written by his close colleague, Peter Buser. Also included in the volume are articles on analytic topics, such as Szego's theorem, and on geometric topics, such as isoperimetric inequalities and symmetries of manifolds. The book is suitable for graduate studentsand researchers interested in various aspects of geometry and global analysis.
Publisher: American Mathematical Soc.
ISBN: 0821837109
Category : Mathematics
Languages : en
Pages : 298
Book Description
This volume contains articles based on talks given at the Robert Brooks Memorial Conference on Geometry and Spectral Theory and the Workshop on Groups, Geometry and Dynamics held at Technion - the Israel Institute of Technology (Haifa). Robert Brooks' (1952 - 2002) broad range of mathematical interests is represented in the volume, which is devoted to various aspects of global analysis, spectral theory, the theory of Riemann surfaces, Riemannian and discrete geometry, and numbertheory. A survey of Brooks' work has been written by his close colleague, Peter Buser. Also included in the volume are articles on analytic topics, such as Szego's theorem, and on geometric topics, such as isoperimetric inequalities and symmetries of manifolds. The book is suitable for graduate studentsand researchers interested in various aspects of geometry and global analysis.
Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday
Author: Fritz Gesztesy
Publisher: American Mathematical Soc.
ISBN: 082184248X
Category : Mathematics
Languages : en
Pages : 528
Book Description
This Festschrift had its origins in a conference called SimonFest held at Caltech, March 27-31, 2006, to honor Barry Simon's 60th birthday. It is not a proceedings volume in the usual sense since the emphasis of the majority of the contributions is on reviews of the state of the art of certain fields, with particular focus on recent developments and open problems. The bulk of the articles in this Festschrift are of this survey form, and a few review Simon's contributions to aparticular area. Part 1 contains surveys in the areas of Quantum Field Theory, Statistical Mechanics, Nonrelativistic Two-Body and $N$-Body Quantum Systems, Resonances, Quantum Mechanics with Electric and Magnetic Fields, and the Semiclassical Limit. Part 2 contains surveys in the areas of Random andErgodic Schrodinger Operators, Singular Continuous Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory. In several cases, this collection of surveys portrays both the history of a subject and its current state of the art. A substantial part of the contributions to this Festschrift are survey articles on the state of the art of certain areas with special emphasis on open problems. This will benefit graduate students as well as researchers who want to get a quick, yet comprehensiveintroduction into an area covered in this volume.
Publisher: American Mathematical Soc.
ISBN: 082184248X
Category : Mathematics
Languages : en
Pages : 528
Book Description
This Festschrift had its origins in a conference called SimonFest held at Caltech, March 27-31, 2006, to honor Barry Simon's 60th birthday. It is not a proceedings volume in the usual sense since the emphasis of the majority of the contributions is on reviews of the state of the art of certain fields, with particular focus on recent developments and open problems. The bulk of the articles in this Festschrift are of this survey form, and a few review Simon's contributions to aparticular area. Part 1 contains surveys in the areas of Quantum Field Theory, Statistical Mechanics, Nonrelativistic Two-Body and $N$-Body Quantum Systems, Resonances, Quantum Mechanics with Electric and Magnetic Fields, and the Semiclassical Limit. Part 2 contains surveys in the areas of Random andErgodic Schrodinger Operators, Singular Continuous Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory. In several cases, this collection of surveys portrays both the history of a subject and its current state of the art. A substantial part of the contributions to this Festschrift are survey articles on the state of the art of certain areas with special emphasis on open problems. This will benefit graduate students as well as researchers who want to get a quick, yet comprehensiveintroduction into an area covered in this volume.
Arithmetic Groups and Their Generalizations
Author: Lizhen Ji
Publisher: American Mathematical Soc.
ISBN: 0821848666
Category : Mathematics
Languages : en
Pages : 282
Book Description
In one guise or another, many mathematicians are familiar with certain arithmetic groups, such as $\mathbf{Z}$ or $\textrm{SL}(n, \mathbf{Z})$. Yet, many applications of arithmetic groups and many connections to other subjects within mathematics are less well known. Indeed, arithmetic groups admit many natural and important generalizations. The purpose of this expository book is to explain, through some brief and informal comments and extensive references, what arithmetic groups and their generalizations are, why they are important to study, and how they can be understood and applied to many fields, such as analysis, geometry, topology, number theory, representation theory, and algebraic geometry. It is hoped that such an overview will shed a light on the important role played by arithmetic groups in modern mathematics. Titles in this series are co-published with International Press, Cambridge, MA.Table of Contents: Introduction; General comments on references; Examples of basic arithmetic groups; General arithmetic subgroups and locally symmetric spaces; Discrete subgroups of Lie groups and arithmeticity of lattices in Lie groups; Different completions of $\mathbb{Q}$ and $S$-arithmetic groups over number fields; Global fields and $S$-arithmetic groups over function fields; Finiteness properties of arithmetic and $S$-arithmetic groups; Symmetric spaces, Bruhat-Tits buildings and their arithmetic quotients; Compactifications of locally symmetric spaces; Rigidity of locally symmetric spaces; Automorphic forms and automorphic representations for general arithmetic groups; Cohomology of arithmetic groups; $K$-groups of rings of integers and $K$-groups of group rings; Locally homogeneous manifolds and period domains; Non-cofinite discrete groups, geometrically finite groups; Large scale geometry of discrete groups; Tree lattices; Hyperbolic groups; Mapping class groups and outer automorphism groups of free groups; Outer automorphism group of free groups and the outer spaces; References; Index. Review from Mathematical Reviews: ...the author deserves credit for having done the tremendous job of encompassing every aspect of arithmetic groups visible in today's mathematics in a systematic manner; the book should be an important guide for some time to come.(AMSIP/43.
Publisher: American Mathematical Soc.
ISBN: 0821848666
Category : Mathematics
Languages : en
Pages : 282
Book Description
In one guise or another, many mathematicians are familiar with certain arithmetic groups, such as $\mathbf{Z}$ or $\textrm{SL}(n, \mathbf{Z})$. Yet, many applications of arithmetic groups and many connections to other subjects within mathematics are less well known. Indeed, arithmetic groups admit many natural and important generalizations. The purpose of this expository book is to explain, through some brief and informal comments and extensive references, what arithmetic groups and their generalizations are, why they are important to study, and how they can be understood and applied to many fields, such as analysis, geometry, topology, number theory, representation theory, and algebraic geometry. It is hoped that such an overview will shed a light on the important role played by arithmetic groups in modern mathematics. Titles in this series are co-published with International Press, Cambridge, MA.Table of Contents: Introduction; General comments on references; Examples of basic arithmetic groups; General arithmetic subgroups and locally symmetric spaces; Discrete subgroups of Lie groups and arithmeticity of lattices in Lie groups; Different completions of $\mathbb{Q}$ and $S$-arithmetic groups over number fields; Global fields and $S$-arithmetic groups over function fields; Finiteness properties of arithmetic and $S$-arithmetic groups; Symmetric spaces, Bruhat-Tits buildings and their arithmetic quotients; Compactifications of locally symmetric spaces; Rigidity of locally symmetric spaces; Automorphic forms and automorphic representations for general arithmetic groups; Cohomology of arithmetic groups; $K$-groups of rings of integers and $K$-groups of group rings; Locally homogeneous manifolds and period domains; Non-cofinite discrete groups, geometrically finite groups; Large scale geometry of discrete groups; Tree lattices; Hyperbolic groups; Mapping class groups and outer automorphism groups of free groups; Outer automorphism group of free groups and the outer spaces; References; Index. Review from Mathematical Reviews: ...the author deserves credit for having done the tremendous job of encompassing every aspect of arithmetic groups visible in today's mathematics in a systematic manner; the book should be an important guide for some time to come.(AMSIP/43.
Topological and Asymptotic Aspects of Group Theory
Author: R. I. Grigorchuk
Publisher: American Mathematical Soc.
ISBN: 0821837567
Category : Mathematics
Languages : en
Pages : 248
Book Description
The articles in this volume are based on the talks given at two special sessions at the AMS Sectional meetings held in 2004. The articles cover various topological and asymptotic aspects of group theory, such as hyperbolic and relatively hyperbolic groups, asymptotic cones, Thompson's group, Nielsen fixed point theory, homology, groups acting on trees, groups generated by finite automata, iterated monodromy groups, random walks on finitely generated groups, heat kernels, and currents on free groups.
Publisher: American Mathematical Soc.
ISBN: 0821837567
Category : Mathematics
Languages : en
Pages : 248
Book Description
The articles in this volume are based on the talks given at two special sessions at the AMS Sectional meetings held in 2004. The articles cover various topological and asymptotic aspects of group theory, such as hyperbolic and relatively hyperbolic groups, asymptotic cones, Thompson's group, Nielsen fixed point theory, homology, groups acting on trees, groups generated by finite automata, iterated monodromy groups, random walks on finitely generated groups, heat kernels, and currents on free groups.
Handbook of Teichmüller Theory
Author: Athanase Papadopoulos
Publisher: European Mathematical Society
ISBN: 9783037191033
Category : Mathematics
Languages : en
Pages : 876
Book Description
The subject of this handbook is Teichmuller theory in a wide sense, namely the theory of geometric structures on surfaces and their moduli spaces. This includes the study of vector bundles on these moduli spaces, the study of mapping class groups, the relation with $3$-manifolds, the relation with symmetric spaces and arithmetic groups, the representation theory of fundamental groups, and applications to physics. Thus the handbook is a place where several fields of mathematics interact: Riemann surfaces, hyperbolic geometry, partial differential equations, several complex variables, algebraic geometry, algebraic topology, combinatorial topology, low-dimensional topology, theoretical physics, and others. This confluence of ideas toward a unique subject is a manifestation of the unity and harmony of mathematics. This volume contains surveys on the fundamental theory as well as surveys on applications to and relations with the fields mentioned above. It is written by leading experts in these fields. Some of the surveys contain classical material, while others present the latest developments of the theory as well as open problems. This volume is divided into the following four sections: The metric and the analytic theory The group theory The algebraic topology of mapping class groups and moduli spaces Teichmuller theory and mathematical physics This handbook is addressed to graduate students and researchers in all the fields mentioned.
Publisher: European Mathematical Society
ISBN: 9783037191033
Category : Mathematics
Languages : en
Pages : 876
Book Description
The subject of this handbook is Teichmuller theory in a wide sense, namely the theory of geometric structures on surfaces and their moduli spaces. This includes the study of vector bundles on these moduli spaces, the study of mapping class groups, the relation with $3$-manifolds, the relation with symmetric spaces and arithmetic groups, the representation theory of fundamental groups, and applications to physics. Thus the handbook is a place where several fields of mathematics interact: Riemann surfaces, hyperbolic geometry, partial differential equations, several complex variables, algebraic geometry, algebraic topology, combinatorial topology, low-dimensional topology, theoretical physics, and others. This confluence of ideas toward a unique subject is a manifestation of the unity and harmony of mathematics. This volume contains surveys on the fundamental theory as well as surveys on applications to and relations with the fields mentioned above. It is written by leading experts in these fields. Some of the surveys contain classical material, while others present the latest developments of the theory as well as open problems. This volume is divided into the following four sections: The metric and the analytic theory The group theory The algebraic topology of mapping class groups and moduli spaces Teichmuller theory and mathematical physics This handbook is addressed to graduate students and researchers in all the fields mentioned.
Algebraic and Geometric Combinatorics
Author: Christos A. Athanasiadis
Publisher: American Mathematical Soc.
ISBN: 0821840800
Category : Mathematics
Languages : en
Pages : 342
Book Description
This volume contains original research and survey articles stemming from the Euroconference ``Algebraic and Geometric Combinatorics''. The papers discuss a wide range of problems that illustrate interactions of combinatorics with other branches of mathematics, such as commutative algebra, algebraic geometry, convex and discrete geometry, enumerative geometry, and topology of complexes and partially ordered sets. Among the topics covered are combinatorics of polytopes, lattice polytopes, triangulations and subdivisions, Cohen-Macaulay cell complexes, monomial ideals, geometry of toric surfaces, groupoids in combinatorics, Kazhdan-Lusztig combinatorics, and graph colorings. This book is aimed at researchers and graduate students interested in various aspects of modern combinatorial theories.
Publisher: American Mathematical Soc.
ISBN: 0821840800
Category : Mathematics
Languages : en
Pages : 342
Book Description
This volume contains original research and survey articles stemming from the Euroconference ``Algebraic and Geometric Combinatorics''. The papers discuss a wide range of problems that illustrate interactions of combinatorics with other branches of mathematics, such as commutative algebra, algebraic geometry, convex and discrete geometry, enumerative geometry, and topology of complexes and partially ordered sets. Among the topics covered are combinatorics of polytopes, lattice polytopes, triangulations and subdivisions, Cohen-Macaulay cell complexes, monomial ideals, geometry of toric surfaces, groupoids in combinatorics, Kazhdan-Lusztig combinatorics, and graph colorings. This book is aimed at researchers and graduate students interested in various aspects of modern combinatorial theories.
Introduction to Isospectrality
Author: Alberto Arabia
Publisher: Springer Nature
ISBN: 3031171233
Category : Mathematics
Languages : en
Pages : 247
Book Description
"Can one hear the shape of a drum?" This striking question, made famous by Mark Kac, conceals a precise mathematical problem, whose study led to sophisticated mathematics. This textbook presents the theory underlying the problem, for the first time in a form accessible to students. Specifically, this book provides a detailed presentation of Sunada's method and the construction of non-isometric yet isospectral drum membranes, as first discovered by Gordon–Webb–Wolpert. The book begins with an introductory chapter on Spectral Geometry, emphasizing isospectrality and providing a panoramic view (without proofs) of the Sunada–Bérard–Buser strategy. The rest of the book consists of three chapters. Chapter 2 gives an elementary treatment of flat surfaces and describes Buser's combinatorial method to construct a flat surface with a given group of isometries (a Buser surface). Chapter 3 proves the main isospectrality theorems and describes the transplantation technique on Buser surfaces. Chapter 4 builds Gordon–Webb–Wolpert domains from Buser surfaces and establishes their isospectrality. Richly illustrated and supported by four substantial appendices, this book is suitable for lecture courses to students having completed introductory graduate courses in algebra, analysis, differential geometry and topology. It also offers researchers an elegant, self-contained reference on the topic of isospectrality.
Publisher: Springer Nature
ISBN: 3031171233
Category : Mathematics
Languages : en
Pages : 247
Book Description
"Can one hear the shape of a drum?" This striking question, made famous by Mark Kac, conceals a precise mathematical problem, whose study led to sophisticated mathematics. This textbook presents the theory underlying the problem, for the first time in a form accessible to students. Specifically, this book provides a detailed presentation of Sunada's method and the construction of non-isometric yet isospectral drum membranes, as first discovered by Gordon–Webb–Wolpert. The book begins with an introductory chapter on Spectral Geometry, emphasizing isospectrality and providing a panoramic view (without proofs) of the Sunada–Bérard–Buser strategy. The rest of the book consists of three chapters. Chapter 2 gives an elementary treatment of flat surfaces and describes Buser's combinatorial method to construct a flat surface with a given group of isometries (a Buser surface). Chapter 3 proves the main isospectrality theorems and describes the transplantation technique on Buser surfaces. Chapter 4 builds Gordon–Webb–Wolpert domains from Buser surfaces and establishes their isospectrality. Richly illustrated and supported by four substantial appendices, this book is suitable for lecture courses to students having completed introductory graduate courses in algebra, analysis, differential geometry and topology. It also offers researchers an elegant, self-contained reference on the topic of isospectrality.
Geometry, Spectral Theory, Groups, and Dynamics
Author: Robert Brooks
Publisher: American Mathematical Soc.
ISBN: 9780821885642
Category : Mathematics
Languages : en
Pages : 300
Book Description
This volume contains articles based on talks given at the Robert Brooks Memorial Conference on Geometry and Spectral Theory and the Workshop on Groups, Geometry and Dynamics held at Technion - the Israel Institute of Technology (Haifa). Robert Brooks' (1952-2002) broad range of mathematical interests is represented in the volume, which is devoted to various aspects of global analysis, spectral theory, the theory of Riemann surfaces, Riemannian and discrete geometry, and number theory. A survey of Brooks' work has been written by his close colleague, Peter Buser. Also included in the volume are articles on analytic topics, such as Szegos theorem, and on geometric topics, such as isoperimetric inequalities and symmetries of manifolds. The book is suitable for graduate students and researchers interested in various aspects of geometry and global analysis.
Publisher: American Mathematical Soc.
ISBN: 9780821885642
Category : Mathematics
Languages : en
Pages : 300
Book Description
This volume contains articles based on talks given at the Robert Brooks Memorial Conference on Geometry and Spectral Theory and the Workshop on Groups, Geometry and Dynamics held at Technion - the Israel Institute of Technology (Haifa). Robert Brooks' (1952-2002) broad range of mathematical interests is represented in the volume, which is devoted to various aspects of global analysis, spectral theory, the theory of Riemann surfaces, Riemannian and discrete geometry, and number theory. A survey of Brooks' work has been written by his close colleague, Peter Buser. Also included in the volume are articles on analytic topics, such as Szegos theorem, and on geometric topics, such as isoperimetric inequalities and symmetries of manifolds. The book is suitable for graduate students and researchers interested in various aspects of geometry and global analysis.