Author: Dierck-Ekkehard Liebscher
Publisher: Wiley-VCH
ISBN:
Category : Mathematics
Languages : de
Pages : 260
Book Description
A description of the geometry of space-time with all the questions and issues explained without the need for formulas. As such, the author shows that this is indeed geometry, with actual constructions familiar from Euclidean geometry, and which allow exact demonstrations and proofs. The formal mathematics behind these constructions is provided in the appendices. The result is thus not a textbook introducing readers to the theory of special relativity so they may calculate formally, but rather aims to show the connection with synthetic geometry. It presents the relation to projective geometry and uses this to illustrate the starting points of general relativity. Written at an introductory level for undergraduates, this novel presentation will also benefit teaching staff.
The Geometry of Time
Author: Dierck-Ekkehard Liebscher
Publisher: Wiley-VCH
ISBN:
Category : Mathematics
Languages : de
Pages : 260
Book Description
A description of the geometry of space-time with all the questions and issues explained without the need for formulas. As such, the author shows that this is indeed geometry, with actual constructions familiar from Euclidean geometry, and which allow exact demonstrations and proofs. The formal mathematics behind these constructions is provided in the appendices. The result is thus not a textbook introducing readers to the theory of special relativity so they may calculate formally, but rather aims to show the connection with synthetic geometry. It presents the relation to projective geometry and uses this to illustrate the starting points of general relativity. Written at an introductory level for undergraduates, this novel presentation will also benefit teaching staff.
Publisher: Wiley-VCH
ISBN:
Category : Mathematics
Languages : de
Pages : 260
Book Description
A description of the geometry of space-time with all the questions and issues explained without the need for formulas. As such, the author shows that this is indeed geometry, with actual constructions familiar from Euclidean geometry, and which allow exact demonstrations and proofs. The formal mathematics behind these constructions is provided in the appendices. The result is thus not a textbook introducing readers to the theory of special relativity so they may calculate formally, but rather aims to show the connection with synthetic geometry. It presents the relation to projective geometry and uses this to illustrate the starting points of general relativity. Written at an introductory level for undergraduates, this novel presentation will also benefit teaching staff.
Spacetime and Geometry
Author: Sean M. Carroll
Publisher: Cambridge University Press
ISBN: 1108488390
Category : Science
Languages : en
Pages : 529
Book Description
An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.
Publisher: Cambridge University Press
ISBN: 1108488390
Category : Science
Languages : en
Pages : 529
Book Description
An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.
Geometry Of Time-spaces: Non-commutative Algebraic Geometry, Applied To Quantum Theory
Author: Olav Arnfinn Laudal
Publisher: World Scientific
ISBN: 9814460702
Category : Mathematics
Languages : en
Pages : 154
Book Description
This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory of phase spaces, and its canonical Dirac derivation. The book starts with a new definition of time, relative to which the set of mathematical velocities form a compact set, implying special and general relativity. With this model in mind, a general Quantum Theory is developed and shown to fit with the classical theory. In particular the “toy”-model used as example, contains, as part of the structure, the classical gauge groups u(1), su(2) and su(3), and therefore also the theory of spin and quarks, etc.
Publisher: World Scientific
ISBN: 9814460702
Category : Mathematics
Languages : en
Pages : 154
Book Description
This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory of phase spaces, and its canonical Dirac derivation. The book starts with a new definition of time, relative to which the set of mathematical velocities form a compact set, implying special and general relativity. With this model in mind, a general Quantum Theory is developed and shown to fit with the classical theory. In particular the “toy”-model used as example, contains, as part of the structure, the classical gauge groups u(1), su(2) and su(3), and therefore also the theory of spin and quarks, etc.
The Geometry of Spacetime
Author: James J. Callahan
Publisher: Springer Science & Business Media
ISBN: 1475767366
Category : Science
Languages : en
Pages : 474
Book Description
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
Publisher: Springer Science & Business Media
ISBN: 1475767366
Category : Science
Languages : en
Pages : 474
Book Description
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
Space and Geometry
Author: Ernst Mach
Publisher: Courier Corporation
ISBN: 0486439097
Category : Science
Languages : en
Pages : 162
Book Description
These three essays by an eminent scientist explore the nature, origin, and development of our concepts of space from the points of view of the senses, history, and physics. They examine the subject from every direction, in a manner suitable for both undergraduates and other readers. 25 figures.1906 edition.
Publisher: Courier Corporation
ISBN: 0486439097
Category : Science
Languages : en
Pages : 162
Book Description
These three essays by an eminent scientist explore the nature, origin, and development of our concepts of space from the points of view of the senses, history, and physics. They examine the subject from every direction, in a manner suitable for both undergraduates and other readers. 25 figures.1906 edition.
Relativity and Geometry
Author: Roberto Torretti
Publisher: Courier Corporation
ISBN: 0486690466
Category : Science
Languages : en
Pages : 417
Book Description
Early in this century, it was shown that the new non-Newtonian physics -- known as Einstein's Special Theory of Relativity -- rested on a new, non-Euclidean geometry, which incorporated time and space into a unified "chronogeometric" structure. This high-level study elucidates the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phase of Relativity. After a discussion of Newtonian principles and 19th-century views on electrodynamics and the aether, the author offers illuminating expositions of Einstein's electrodynamics of moving bodies, Minkowski spacetime, Einstein's quest for a theory of gravity, gravitational geometry, the concept of simultaneity, time and causality and other topics. An important Appendix -- designed to define spacetime curvature -- considers differentiable manifolds, fiber bundles, linear connections and useful formulae. Relativity continues to be a major focus of interest for physicists, mathematicians and philosophers of science. This highly regarded work offers them a rich, "historico-critical" exposition -- emphasizing geometrical ideas -- of the elements of the Special and General Theory of Relativity.
Publisher: Courier Corporation
ISBN: 0486690466
Category : Science
Languages : en
Pages : 417
Book Description
Early in this century, it was shown that the new non-Newtonian physics -- known as Einstein's Special Theory of Relativity -- rested on a new, non-Euclidean geometry, which incorporated time and space into a unified "chronogeometric" structure. This high-level study elucidates the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phase of Relativity. After a discussion of Newtonian principles and 19th-century views on electrodynamics and the aether, the author offers illuminating expositions of Einstein's electrodynamics of moving bodies, Minkowski spacetime, Einstein's quest for a theory of gravity, gravitational geometry, the concept of simultaneity, time and causality and other topics. An important Appendix -- designed to define spacetime curvature -- considers differentiable manifolds, fiber bundles, linear connections and useful formulae. Relativity continues to be a major focus of interest for physicists, mathematicians and philosophers of science. This highly regarded work offers them a rich, "historico-critical" exposition -- emphasizing geometrical ideas -- of the elements of the Special and General Theory of Relativity.
The Large Scale Structure of Space-Time
Author: S. W. Hawking
Publisher: Cambridge University Press
ISBN: 1139810952
Category : Science
Languages : en
Pages : 406
Book Description
Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.
Publisher: Cambridge University Press
ISBN: 1139810952
Category : Science
Languages : en
Pages : 406
Book Description
Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.
Quantum Mechanics in the Geometry of Space-Time
Author: Roger Boudet
Publisher: Springer Science & Business Media
ISBN: 3642191991
Category : Science
Languages : en
Pages : 126
Book Description
This book continues the fundamental work of Arnold Sommerfeld and David Hestenes formulating theoretical physics in terms of Minkowski space-time geometry. We see how the standard matrix version of the Dirac equation can be reformulated in terms of a real space-time algebra, thus revealing a geometric meaning for the “number i” in quantum mechanics. Next, it is examined in some detail how electroweak theory can be integrated into the Dirac theory and this way interpreted in terms of space-time geometry. Finally, some implications for quantum electrodynamics are considered. The presentation of real quantum electromagnetism is expressed in an addendum. The book covers both the use of the complex and the real languages and allows the reader acquainted with the first language to make a step by step translation to the second one.
Publisher: Springer Science & Business Media
ISBN: 3642191991
Category : Science
Languages : en
Pages : 126
Book Description
This book continues the fundamental work of Arnold Sommerfeld and David Hestenes formulating theoretical physics in terms of Minkowski space-time geometry. We see how the standard matrix version of the Dirac equation can be reformulated in terms of a real space-time algebra, thus revealing a geometric meaning for the “number i” in quantum mechanics. Next, it is examined in some detail how electroweak theory can be integrated into the Dirac theory and this way interpreted in terms of space-time geometry. Finally, some implications for quantum electrodynamics are considered. The presentation of real quantum electromagnetism is expressed in an addendum. The book covers both the use of the complex and the real languages and allows the reader acquainted with the first language to make a step by step translation to the second one.
Projective Geometry
Author: Olive Whicher
Publisher: Rudolf Steiner Press
ISBN: 185584379X
Category : Mathematics
Languages : en
Pages : 294
Book Description
Whicher explores the concepts of polarity and movement in modern projective geometry as a discipline of thought that transcends the limited and rigid space and forms of Euclid, and the corresponding material forces conceived in classical mechanics. Rudolf Steiner underlined the importance of projective geometry as, "a method of training the imaginative faculties of thinking, so that they become an instrument of cognition no less conscious and exact than mathematical reasoning." This seminal approach allows for precise scientific understanding of the concept of creative fields of formative (etheric) forces at work in nature--in plants, animals and in the human being. Olive Whicher's groundbreaking book presents an accessible--non-mathematician's--approach to projective geometry. Profusely illustrated, and written with fire and intuitive genius, this work will be of interest to anyone wishing to cultivate the power of inner visualization in a realm of structural beauty.
Publisher: Rudolf Steiner Press
ISBN: 185584379X
Category : Mathematics
Languages : en
Pages : 294
Book Description
Whicher explores the concepts of polarity and movement in modern projective geometry as a discipline of thought that transcends the limited and rigid space and forms of Euclid, and the corresponding material forces conceived in classical mechanics. Rudolf Steiner underlined the importance of projective geometry as, "a method of training the imaginative faculties of thinking, so that they become an instrument of cognition no less conscious and exact than mathematical reasoning." This seminal approach allows for precise scientific understanding of the concept of creative fields of formative (etheric) forces at work in nature--in plants, animals and in the human being. Olive Whicher's groundbreaking book presents an accessible--non-mathematician's--approach to projective geometry. Profusely illustrated, and written with fire and intuitive genius, this work will be of interest to anyone wishing to cultivate the power of inner visualization in a realm of structural beauty.
Spinors and Space-Time: Volume 2, Spinor and Twistor Methods in Space-Time Geometry
Author: Roger Penrose
Publisher: Cambridge University Press
ISBN: 9780521347860
Category : Mathematics
Languages : en
Pages : 516
Book Description
In the two volumes that comprise this work Roger Penrose and Wolfgang Rindler introduce the calculus of 2-spinors and the theory of twistors, and discuss in detail how these powerful and elegant methods may be used to elucidate the structure and properties of space-time. In volume 1, Two-spinor calculus and relativistic fields, the calculus of 2-spinors is introduced and developed. Volume 2, Spinor and twistor methods in space-time geometry, introduces the theory of twistors, and studies in detail how the theory of twistors and 2-spinors can be applied to the study of space-time. This work will be of great value to all those studying relativity, differential geometry, particle physics and quantum field theory from beginning graduate students to experts in these fields.
Publisher: Cambridge University Press
ISBN: 9780521347860
Category : Mathematics
Languages : en
Pages : 516
Book Description
In the two volumes that comprise this work Roger Penrose and Wolfgang Rindler introduce the calculus of 2-spinors and the theory of twistors, and discuss in detail how these powerful and elegant methods may be used to elucidate the structure and properties of space-time. In volume 1, Two-spinor calculus and relativistic fields, the calculus of 2-spinors is introduced and developed. Volume 2, Spinor and twistor methods in space-time geometry, introduces the theory of twistors, and studies in detail how the theory of twistors and 2-spinors can be applied to the study of space-time. This work will be of great value to all those studying relativity, differential geometry, particle physics and quantum field theory from beginning graduate students to experts in these fields.