Author: Gregory L. Naber
Publisher: Courier Corporation
ISBN: 9780486432359
Category : Mathematics
Languages : en
Pages : 276
Book Description
This mathematically rigorous treatment examines Zeeman's characterization of the causal automorphisms of Minkowski spacetime and the Penrose theorem concerning the apparent shape of a relativistically moving sphere. Other topics include the construction of a geometric theory of the electromagnetic field; an in-depth introduction to the theory of spinors; and a classification of electromagnetic fields in both tensor and spinor form. Appendixes introduce a topology for Minkowski spacetime and discuss Dirac's famous "Scissors Problem." Appropriate for graduate-level courses, this text presumes only a knowledge of linear algebra and elementary point-set topology. 1992 edition. 43 figures.
The Geometry of Minkowski Spacetime
Author: Gregory L. Naber
Publisher: Courier Corporation
ISBN: 9780486432359
Category : Mathematics
Languages : en
Pages : 276
Book Description
This mathematically rigorous treatment examines Zeeman's characterization of the causal automorphisms of Minkowski spacetime and the Penrose theorem concerning the apparent shape of a relativistically moving sphere. Other topics include the construction of a geometric theory of the electromagnetic field; an in-depth introduction to the theory of spinors; and a classification of electromagnetic fields in both tensor and spinor form. Appendixes introduce a topology for Minkowski spacetime and discuss Dirac's famous "Scissors Problem." Appropriate for graduate-level courses, this text presumes only a knowledge of linear algebra and elementary point-set topology. 1992 edition. 43 figures.
Publisher: Courier Corporation
ISBN: 9780486432359
Category : Mathematics
Languages : en
Pages : 276
Book Description
This mathematically rigorous treatment examines Zeeman's characterization of the causal automorphisms of Minkowski spacetime and the Penrose theorem concerning the apparent shape of a relativistically moving sphere. Other topics include the construction of a geometric theory of the electromagnetic field; an in-depth introduction to the theory of spinors; and a classification of electromagnetic fields in both tensor and spinor form. Appendixes introduce a topology for Minkowski spacetime and discuss Dirac's famous "Scissors Problem." Appropriate for graduate-level courses, this text presumes only a knowledge of linear algebra and elementary point-set topology. 1992 edition. 43 figures.
The Geometry of Spacetime
Author: James J. Callahan
Publisher: Springer Science & Business Media
ISBN: 1475767366
Category : Science
Languages : en
Pages : 474
Book Description
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
Publisher: Springer Science & Business Media
ISBN: 1475767366
Category : Science
Languages : en
Pages : 474
Book Description
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
Geometrical Physics in Minkowski Spacetime
Author: E.G.Peter Rowe
Publisher: Springer Science & Business Media
ISBN: 1447138937
Category : Science
Languages : en
Pages : 263
Book Description
From the reviews: "This attractive book provides an account of the theory of special relativity from a geometrical viewpoint, explaining the unification and insights that are given by such a treatment. [...] Can be read with profit by all who have taken a first course in relativity physics." ASLIB Book Guide
Publisher: Springer Science & Business Media
ISBN: 1447138937
Category : Science
Languages : en
Pages : 263
Book Description
From the reviews: "This attractive book provides an account of the theory of special relativity from a geometrical viewpoint, explaining the unification and insights that are given by such a treatment. [...] Can be read with profit by all who have taken a first course in relativity physics." ASLIB Book Guide
Relativity and Geometry
Author: Roberto Torretti
Publisher: Courier Corporation
ISBN: 0486690466
Category : Science
Languages : en
Pages : 417
Book Description
Early in this century, it was shown that the new non-Newtonian physics -- known as Einstein's Special Theory of Relativity -- rested on a new, non-Euclidean geometry, which incorporated time and space into a unified "chronogeometric" structure. This high-level study elucidates the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phase of Relativity. After a discussion of Newtonian principles and 19th-century views on electrodynamics and the aether, the author offers illuminating expositions of Einstein's electrodynamics of moving bodies, Minkowski spacetime, Einstein's quest for a theory of gravity, gravitational geometry, the concept of simultaneity, time and causality and other topics. An important Appendix -- designed to define spacetime curvature -- considers differentiable manifolds, fiber bundles, linear connections and useful formulae. Relativity continues to be a major focus of interest for physicists, mathematicians and philosophers of science. This highly regarded work offers them a rich, "historico-critical" exposition -- emphasizing geometrical ideas -- of the elements of the Special and General Theory of Relativity.
Publisher: Courier Corporation
ISBN: 0486690466
Category : Science
Languages : en
Pages : 417
Book Description
Early in this century, it was shown that the new non-Newtonian physics -- known as Einstein's Special Theory of Relativity -- rested on a new, non-Euclidean geometry, which incorporated time and space into a unified "chronogeometric" structure. This high-level study elucidates the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phase of Relativity. After a discussion of Newtonian principles and 19th-century views on electrodynamics and the aether, the author offers illuminating expositions of Einstein's electrodynamics of moving bodies, Minkowski spacetime, Einstein's quest for a theory of gravity, gravitational geometry, the concept of simultaneity, time and causality and other topics. An important Appendix -- designed to define spacetime curvature -- considers differentiable manifolds, fiber bundles, linear connections and useful formulae. Relativity continues to be a major focus of interest for physicists, mathematicians and philosophers of science. This highly regarded work offers them a rich, "historico-critical" exposition -- emphasizing geometrical ideas -- of the elements of the Special and General Theory of Relativity.
Quantum Mechanics in the Geometry of Space-Time
Author: Roger Boudet
Publisher: Springer Science & Business Media
ISBN: 3642191991
Category : Science
Languages : en
Pages : 126
Book Description
This book continues the fundamental work of Arnold Sommerfeld and David Hestenes formulating theoretical physics in terms of Minkowski space-time geometry. We see how the standard matrix version of the Dirac equation can be reformulated in terms of a real space-time algebra, thus revealing a geometric meaning for the “number i” in quantum mechanics. Next, it is examined in some detail how electroweak theory can be integrated into the Dirac theory and this way interpreted in terms of space-time geometry. Finally, some implications for quantum electrodynamics are considered. The presentation of real quantum electromagnetism is expressed in an addendum. The book covers both the use of the complex and the real languages and allows the reader acquainted with the first language to make a step by step translation to the second one.
Publisher: Springer Science & Business Media
ISBN: 3642191991
Category : Science
Languages : en
Pages : 126
Book Description
This book continues the fundamental work of Arnold Sommerfeld and David Hestenes formulating theoretical physics in terms of Minkowski space-time geometry. We see how the standard matrix version of the Dirac equation can be reformulated in terms of a real space-time algebra, thus revealing a geometric meaning for the “number i” in quantum mechanics. Next, it is examined in some detail how electroweak theory can be integrated into the Dirac theory and this way interpreted in terms of space-time geometry. Finally, some implications for quantum electrodynamics are considered. The presentation of real quantum electromagnetism is expressed in an addendum. The book covers both the use of the complex and the real languages and allows the reader acquainted with the first language to make a step by step translation to the second one.
Physical Relativity
Author: Harvey R. Brown
Publisher: Clarendon Press
ISBN: 0191534706
Category : Science
Languages : en
Pages : 240
Book Description
Physical Relativity explores the nature of the distinction at the heart of Einstein's 1905 formulation of his special theory of relativity: that between kinematics and dynamics. Einstein himself became increasingly uncomfortable with this distinction, and with the limitations of what he called the 'principle theory' approach inspired by the logic of thermodynamics. A handful of physicists and philosophers have over the last century likewise expressed doubts about Einstein's treatment of the relativistic behaviour of rigid bodies and clocks in motion in the kinematical part of his great paper, and suggested that the dynamical understanding of length contraction and time dilation intimated by the immediate precursors of Einstein is more fundamental. Harvey Brown both examines and extends these arguments (which support a more 'constructive' approach to relativistic effects in Einstein's terminology), after giving a careful analysis of key features of the pre-history of relativity theory. He argues furthermore that the geometrization of the theory by Minkowski in 1908 brought illumination, but not a causal explanation of relativistic effects. Finally, Brown tries to show that the dynamical interpretation of special relativity defended in the book is consistent with the role this theory must play as a limiting case of Einstein's 1915 theory of gravity: the general theory of relativity. Appearing in the centennial year of Einstein's celebrated paper on special relativity, Physical Relativity is an unusual, critical examination of the way Einstein formulated his theory. It also examines in detail certain specific historical and conceptual issues that have long given rise to debate in both special and general relativity theory, such as the conventionality of simultaneity, the principle of general covariance, and the consistency or otherwise of the special theory with quantum mechanics. Harvey Brown' s new interpretation of relativity theory will interest anyone working on these central topics in modern physics.
Publisher: Clarendon Press
ISBN: 0191534706
Category : Science
Languages : en
Pages : 240
Book Description
Physical Relativity explores the nature of the distinction at the heart of Einstein's 1905 formulation of his special theory of relativity: that between kinematics and dynamics. Einstein himself became increasingly uncomfortable with this distinction, and with the limitations of what he called the 'principle theory' approach inspired by the logic of thermodynamics. A handful of physicists and philosophers have over the last century likewise expressed doubts about Einstein's treatment of the relativistic behaviour of rigid bodies and clocks in motion in the kinematical part of his great paper, and suggested that the dynamical understanding of length contraction and time dilation intimated by the immediate precursors of Einstein is more fundamental. Harvey Brown both examines and extends these arguments (which support a more 'constructive' approach to relativistic effects in Einstein's terminology), after giving a careful analysis of key features of the pre-history of relativity theory. He argues furthermore that the geometrization of the theory by Minkowski in 1908 brought illumination, but not a causal explanation of relativistic effects. Finally, Brown tries to show that the dynamical interpretation of special relativity defended in the book is consistent with the role this theory must play as a limiting case of Einstein's 1915 theory of gravity: the general theory of relativity. Appearing in the centennial year of Einstein's celebrated paper on special relativity, Physical Relativity is an unusual, critical examination of the way Einstein formulated his theory. It also examines in detail certain specific historical and conceptual issues that have long given rise to debate in both special and general relativity theory, such as the conventionality of simultaneity, the principle of general covariance, and the consistency or otherwise of the special theory with quantum mechanics. Harvey Brown' s new interpretation of relativity theory will interest anyone working on these central topics in modern physics.
Minkowski Geometry
Author: Anthony C. Thompson
Publisher: Cambridge University Press
ISBN: 9780521404723
Category : Mathematics
Languages : en
Pages : 380
Book Description
The first comprehensive treatment of Minkowski geometry since the 1940's
Publisher: Cambridge University Press
ISBN: 9780521404723
Category : Mathematics
Languages : en
Pages : 380
Book Description
The first comprehensive treatment of Minkowski geometry since the 1940's
Spacetime and Geometry
Author: Sean M. Carroll
Publisher: Cambridge University Press
ISBN: 1108488390
Category : Science
Languages : en
Pages : 529
Book Description
An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.
Publisher: Cambridge University Press
ISBN: 1108488390
Category : Science
Languages : en
Pages : 529
Book Description
An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.
Independent Axioms for Minkowski Space-Time
Author: John W Schutz
Publisher: CRC Press
ISBN: 9780582317604
Category : Science
Languages : en
Pages : 260
Book Description
The primary aim of this monograph is to clarify the undefined primitive concepts and the axioms which form the basis of Einstein's theory of special relativity. Minkowski space-time is developed from a set of independent axioms, stated in terms of a single relation of betweenness. It is shown that all models are isomorphic to the usual coordinate model, and the axioms are consistent relative to the reals.
Publisher: CRC Press
ISBN: 9780582317604
Category : Science
Languages : en
Pages : 260
Book Description
The primary aim of this monograph is to clarify the undefined primitive concepts and the axioms which form the basis of Einstein's theory of special relativity. Minkowski space-time is developed from a set of independent axioms, stated in terms of a single relation of betweenness. It is shown that all models are isomorphic to the usual coordinate model, and the axioms are consistent relative to the reals.
Deformed Spacetime
Author: Fabio Cardone
Publisher: Springer Science & Business Media
ISBN: 1402062834
Category : Science
Languages : en
Pages : 499
Book Description
This volume provides a detailed discussion of the mathematical aspects and physical applications of a new geometrical structure of space-time, based on a generalization ("deformation") of the usual Minkowski space, as supposed to be endowed with a metric whose coefficients depend on the energy. This new five-dimensional scheme (Deformed Relativity in Five Dimensions, DR5) represents a true generalization of the usual Kaluza-Klein (KK) formalism.
Publisher: Springer Science & Business Media
ISBN: 1402062834
Category : Science
Languages : en
Pages : 499
Book Description
This volume provides a detailed discussion of the mathematical aspects and physical applications of a new geometrical structure of space-time, based on a generalization ("deformation") of the usual Minkowski space, as supposed to be endowed with a metric whose coefficients depend on the energy. This new five-dimensional scheme (Deformed Relativity in Five Dimensions, DR5) represents a true generalization of the usual Kaluza-Klein (KK) formalism.