Author: Andreas Hochenegger
Publisher: Springer Nature
ISBN: 3030186385
Category : Mathematics
Languages : en
Pages : 301
Book Description
Originating from the School on Birational Geometry of Hypersurfaces, this volume focuses on the notion of (stable) rationality of projective varieties and, more specifically, hypersurfaces in projective spaces, and provides a large number of open questions, techniques and spectacular results. The aim of the school was to shed light on this vast area of research by concentrating on two main aspects: (1) Approaches focusing on (stable) rationality using deformation theory and Chow-theoretic tools like decomposition of the diagonal; (2) The connection between K3 surfaces, hyperkähler geometry and cubic fourfolds, which has both a Hodge-theoretic and a homological side. Featuring the beautiful lectures given at the school by Jean-Louis Colliot-Thélène, Daniel Huybrechts, Emanuele Macrì, and Claire Voisin, the volume also includes additional notes by János Kollár and an appendix by Andreas Hochenegger.
Birational Geometry of Hypersurfaces
Author: Andreas Hochenegger
Publisher: Springer Nature
ISBN: 3030186385
Category : Mathematics
Languages : en
Pages : 301
Book Description
Originating from the School on Birational Geometry of Hypersurfaces, this volume focuses on the notion of (stable) rationality of projective varieties and, more specifically, hypersurfaces in projective spaces, and provides a large number of open questions, techniques and spectacular results. The aim of the school was to shed light on this vast area of research by concentrating on two main aspects: (1) Approaches focusing on (stable) rationality using deformation theory and Chow-theoretic tools like decomposition of the diagonal; (2) The connection between K3 surfaces, hyperkähler geometry and cubic fourfolds, which has both a Hodge-theoretic and a homological side. Featuring the beautiful lectures given at the school by Jean-Louis Colliot-Thélène, Daniel Huybrechts, Emanuele Macrì, and Claire Voisin, the volume also includes additional notes by János Kollár and an appendix by Andreas Hochenegger.
Publisher: Springer Nature
ISBN: 3030186385
Category : Mathematics
Languages : en
Pages : 301
Book Description
Originating from the School on Birational Geometry of Hypersurfaces, this volume focuses on the notion of (stable) rationality of projective varieties and, more specifically, hypersurfaces in projective spaces, and provides a large number of open questions, techniques and spectacular results. The aim of the school was to shed light on this vast area of research by concentrating on two main aspects: (1) Approaches focusing on (stable) rationality using deformation theory and Chow-theoretic tools like decomposition of the diagonal; (2) The connection between K3 surfaces, hyperkähler geometry and cubic fourfolds, which has both a Hodge-theoretic and a homological side. Featuring the beautiful lectures given at the school by Jean-Louis Colliot-Thélène, Daniel Huybrechts, Emanuele Macrì, and Claire Voisin, the volume also includes additional notes by János Kollár and an appendix by Andreas Hochenegger.
Several Complex Variables and the Geometry of Real Hypersurfaces
Author: John P. D'Angelo
Publisher: CRC Press
ISBN: 9780849382727
Category : Mathematics
Languages : en
Pages : 350
Book Description
Several Complex Variables and the Geometry of Real Hypersurfaces covers a wide range of information from basic facts about holomorphic functions of several complex variables through deep results such as subelliptic estimates for the ?-Neumann problem on pseudoconvex domains with a real analytic boundary. The book focuses on describing the geometry of a real hypersurface in a complex vector space by understanding its relationship with ambient complex analytic varieties. You will learn how to decide whether a real hypersurface contains complex varieties, how closely such varieties can contact the hypersurface, and why it's important. The book concludes with two sets of problems: routine problems and difficult problems (many of which are unsolved). Principal prerequisites for using this book include a thorough understanding of advanced calculus and standard knowledge of complex analysis in one variable. Several Complex Variables and the Geometry of Real Hypersurfaces will be a useful text for advanced graduate students and professionals working in complex analysis.
Publisher: CRC Press
ISBN: 9780849382727
Category : Mathematics
Languages : en
Pages : 350
Book Description
Several Complex Variables and the Geometry of Real Hypersurfaces covers a wide range of information from basic facts about holomorphic functions of several complex variables through deep results such as subelliptic estimates for the ?-Neumann problem on pseudoconvex domains with a real analytic boundary. The book focuses on describing the geometry of a real hypersurface in a complex vector space by understanding its relationship with ambient complex analytic varieties. You will learn how to decide whether a real hypersurface contains complex varieties, how closely such varieties can contact the hypersurface, and why it's important. The book concludes with two sets of problems: routine problems and difficult problems (many of which are unsolved). Principal prerequisites for using this book include a thorough understanding of advanced calculus and standard knowledge of complex analysis in one variable. Several Complex Variables and the Geometry of Real Hypersurfaces will be a useful text for advanced graduate students and professionals working in complex analysis.
Global Affine Differential Geometry of Hypersurfaces
Author: An-Min Li
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110390906
Category : Mathematics
Languages : en
Pages : 528
Book Description
This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry – as differential geometry in general – has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces. The second edition of this monograph leads the reader from introductory concepts to recent research. Since the publication of the first edition in 1993 there appeared important new contributions, like the solutions of two different affine Bernstein conjectures, due to Chern and Calabi, respectively. Moreover, a large subclass of hyperbolic affine spheres were classified in recent years, namely the locally strongly convex Blaschke hypersurfaces that have parallel cubic form with respect to the Levi-Civita connection of the Blaschke metric. The authors of this book present such results and new methods of proof.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110390906
Category : Mathematics
Languages : en
Pages : 528
Book Description
This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry – as differential geometry in general – has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces. The second edition of this monograph leads the reader from introductory concepts to recent research. Since the publication of the first edition in 1993 there appeared important new contributions, like the solutions of two different affine Bernstein conjectures, due to Chern and Calabi, respectively. Moreover, a large subclass of hyperbolic affine spheres were classified in recent years, namely the locally strongly convex Blaschke hypersurfaces that have parallel cubic form with respect to the Levi-Civita connection of the Blaschke metric. The authors of this book present such results and new methods of proof.
Algebraic Geometry and Number Theory
Author: Hussein Mourtada
Publisher: Birkhäuser
ISBN: 9783319477787
Category : Mathematics
Languages : en
Pages : 232
Book Description
This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.
Publisher: Birkhäuser
ISBN: 9783319477787
Category : Mathematics
Languages : en
Pages : 232
Book Description
This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.
Singularities and Topology of Hypersurfaces
Author: Alexandru Dimca
Publisher: Springer Science & Business Media
ISBN: 1461244048
Category : Mathematics
Languages : en
Pages : 277
Book Description
Publisher: Springer Science & Business Media
ISBN: 1461244048
Category : Mathematics
Languages : en
Pages : 277
Book Description
Lie Sphere Geometry
Author: Thomas E. Cecil
Publisher: Springer Science & Business Media
ISBN: 0387746552
Category : Mathematics
Languages : en
Pages : 214
Book Description
Thomas Cecil is a math professor with an unrivalled grasp of Lie Sphere Geometry. Here, he provides a clear and comprehensive modern treatment of the subject, as well as its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres, and Lie sphere transformations. This new edition contains revised sections on taut submanifolds, compact proper Dupin submanifolds, reducible Dupin submanifolds, and the cyclides of Dupin. Completely new material on isoparametric hypersurfaces in spheres and Dupin hypersurfaces with three and four principal curvatures is also included. The author surveys the known results in these fields and indicates directions for further research and wider application of the methods of Lie sphere geometry.
Publisher: Springer Science & Business Media
ISBN: 0387746552
Category : Mathematics
Languages : en
Pages : 214
Book Description
Thomas Cecil is a math professor with an unrivalled grasp of Lie Sphere Geometry. Here, he provides a clear and comprehensive modern treatment of the subject, as well as its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres, and Lie sphere transformations. This new edition contains revised sections on taut submanifolds, compact proper Dupin submanifolds, reducible Dupin submanifolds, and the cyclides of Dupin. Completely new material on isoparametric hypersurfaces in spheres and Dupin hypersurfaces with three and four principal curvatures is also included. The author surveys the known results in these fields and indicates directions for further research and wider application of the methods of Lie sphere geometry.
Singular Points of Complex Hypersurfaces. (AM-61), Volume 61
Author: John Milnor
Publisher: Princeton University Press
ISBN: 1400881811
Category : Mathematics
Languages : en
Pages : 130
Book Description
The description for this book, Singular Points of Complex Hypersurfaces. (AM-61), Volume 61, will be forthcoming.
Publisher: Princeton University Press
ISBN: 1400881811
Category : Mathematics
Languages : en
Pages : 130
Book Description
The description for this book, Singular Points of Complex Hypersurfaces. (AM-61), Volume 61, will be forthcoming.
Affine Differential Geometry
Author: Katsumi Nomizu
Publisher: Cambridge University Press
ISBN: 9780521441773
Category : Mathematics
Languages : en
Pages : 286
Book Description
This is a self-contained and systematic account of affine differential geometry from a contemporary viewpoint, not only covering the classical theory, but also introducing the modern developments that have happened over the last decade. In order both to cover as much as possible and to keep the text of a reasonable size, the authors have concentrated on the significant features of the subject and their relationship and application to such areas as Riemannian, Euclidean, Lorentzian and projective differential geometry. In so doing, they also provide a modern introduction to the last. Some of the important geometric surfaces considered are illustrated by computer graphics, making this a physically and mathematically attractive book for all researchers in differential geometry, and for mathematical physicists seeking a quick entry into the subject.
Publisher: Cambridge University Press
ISBN: 9780521441773
Category : Mathematics
Languages : en
Pages : 286
Book Description
This is a self-contained and systematic account of affine differential geometry from a contemporary viewpoint, not only covering the classical theory, but also introducing the modern developments that have happened over the last decade. In order both to cover as much as possible and to keep the text of a reasonable size, the authors have concentrated on the significant features of the subject and their relationship and application to such areas as Riemannian, Euclidean, Lorentzian and projective differential geometry. In so doing, they also provide a modern introduction to the last. Some of the important geometric surfaces considered are illustrated by computer graphics, making this a physically and mathematically attractive book for all researchers in differential geometry, and for mathematical physicists seeking a quick entry into the subject.
Introduction to the Affine Differential Geometry of Hypersurfaces
Author: Udo Simon
Publisher:
ISBN:
Category : Affine differential geometry
Languages : en
Pages : 354
Book Description
Publisher:
ISBN:
Category : Affine differential geometry
Languages : en
Pages : 354
Book Description
Spherical Tube Hypersurfaces
Author: Alexander Isaev
Publisher: Springer Science & Business Media
ISBN: 3642197825
Category : Mathematics
Languages : en
Pages : 231
Book Description
We consider Levi non-degenerate tube hypersurfaces in complex linear space which are "spherical", that is, locally CR-equivalent to the real hyperquadric. Spherical hypersurfaces are characterized by the condition of the vanishing of the CR-curvature form, so such hypersurfaces are flat from the CR-geometric viewpoint. On the other hand, such hypersurfaces are of interest from the point of view of affine geometry. Thus our treatment of spherical tube hypersurfaces in this book is two-fold: CR-geometric and affine-geometric. Spherical tube hypersurfaces turn out to possess remarkable properties. For example, every such hypersurface is real-analytic and extends to a closed real-analytic spherical tube hypersurface in complex space. One of our main goals is to give an explicit affine classification of closed spherical tube hypersurfaces whenever possible. In this book we offer a comprehensive exposition of the theory of spherical tube hypersurfaces starting with the idea proposed in the pioneering work by P. Yang (1982) and ending with the new approach due to G. Fels and W. Kaup (2009).
Publisher: Springer Science & Business Media
ISBN: 3642197825
Category : Mathematics
Languages : en
Pages : 231
Book Description
We consider Levi non-degenerate tube hypersurfaces in complex linear space which are "spherical", that is, locally CR-equivalent to the real hyperquadric. Spherical hypersurfaces are characterized by the condition of the vanishing of the CR-curvature form, so such hypersurfaces are flat from the CR-geometric viewpoint. On the other hand, such hypersurfaces are of interest from the point of view of affine geometry. Thus our treatment of spherical tube hypersurfaces in this book is two-fold: CR-geometric and affine-geometric. Spherical tube hypersurfaces turn out to possess remarkable properties. For example, every such hypersurface is real-analytic and extends to a closed real-analytic spherical tube hypersurface in complex space. One of our main goals is to give an explicit affine classification of closed spherical tube hypersurfaces whenever possible. In this book we offer a comprehensive exposition of the theory of spherical tube hypersurfaces starting with the idea proposed in the pioneering work by P. Yang (1982) and ending with the new approach due to G. Fels and W. Kaup (2009).