Geometry and Physics

Geometry and Physics PDF Author: Jürgen Jost
Publisher: Springer Science & Business Media
ISBN: 3642005411
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
"Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective.

The Geometry and Physics of Knots

The Geometry and Physics of Knots PDF Author: Michael Francis Atiyah
Publisher: Cambridge University Press
ISBN: 9780521395540
Category : Mathematics
Languages : en
Pages : 112

Get Book Here

Book Description
These notes deal with an area that lies at the crossroads of mathematics and physics and rest primarily on the pioneering work of Vaughan Jones and Edward Witten, who related polynomial invariants of knots to a topological quantum field theory in 2+1 dimensions.

The Geometry of Physics

The Geometry of Physics PDF Author: Theodore Frankel
Publisher: Cambridge University Press
ISBN: 1139505610
Category : Mathematics
Languages : en
Pages : 749

Get Book Here

Book Description
This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.

Relativity and Geometry

Relativity and Geometry PDF Author: Roberto Torretti
Publisher: Elsevier
ISBN: 1483147371
Category : Science
Languages : en
Pages : 409

Get Book Here

Book Description
Relativity and Geometry aims to elucidate the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phases of relativity. The book contains seven chapters and a mathematical appendix. The first two chapters review a historical background of relativity. Chapter 3 centers on Einstein's first Relativity paper of 1905. Subsequent chapter presents the Minkowskian formulation of special relativity. Chapters 5 and 6 deal with Einstein's search for general relativity from 1907 to 1915, as well as some aspects and subsequent developments of the theory. The last chapter explores the concept of simultaneity, geometric conventionalism, and a few other questions concerning space time structure, causality, and time.

Topology, Geometry, and Gauge Fields

Topology, Geometry, and Gauge Fields PDF Author: Gregory L. Naber
Publisher: Springer Science & Business Media
ISBN: 1475727429
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
Like any books on a subject as vast as this, this book has to have a point-of-view to guide the selection of topics. Naber takes the view that the rekindled interest that mathematics and physics have shown in each other of late should be fostered, and that this is best accomplished by allowing them to cohabit. The book weaves together rudimentary notions from the classical gauge theory of physics with the topological and geometrical concepts that became the mathematical models of these notions. The reader is asked to join the author on some vague notion of what an electromagnetic field might be, to be willing to accept a few of the more elementary pronouncements of quantum mechanics, and to have a solid background in real analysis and linear algebra and some of the vocabulary of modern algebra. In return, the book offers an excursion that begins with the definition of a topological space and finds its way eventually to the moduli space of anti-self-dual SU(2) connections on S4 with instanton number -1.

Geometry and Light

Geometry and Light PDF Author: Ulf Leonhardt
Publisher: Courier Corporation
ISBN: 0486134903
Category : Science
Languages : en
Pages : 290

Get Book Here

Book Description
Suitable for advanced undergraduate and graduate students of engineering, physics, and mathematics and scientific researchers of all types, this is the first authoritative text on invisibility and the science behind it. More than 100 full-color illustrations, plus exercises with solutions. 2010 edition.

Differential Geometry and Mathematical Physics

Differential Geometry and Mathematical Physics PDF Author: Gerd Rudolph
Publisher: Springer Science & Business Media
ISBN: 9400753454
Category : Science
Languages : en
Pages : 766

Get Book Here

Book Description
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.

Geometry, Topology and Physics

Geometry, Topology and Physics PDF Author: Mikio Nakahara
Publisher: Taylor & Francis
ISBN: 1420056948
Category : Mathematics
Languages : en
Pages : 596

Get Book Here

Book Description
Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics PDF Author: Alexander Cardona
Publisher: Springer
ISBN: 3319654276
Category : Science
Languages : en
Pages : 347

Get Book Here

Book Description
This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.

Differential Geometry with Applications to Mechanics and Physics

Differential Geometry with Applications to Mechanics and Physics PDF Author: Yves Talpaert
Publisher: CRC Press
ISBN: 9780824703851
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential forms; Lie derivative and Lie algebra; n-form integration on n-manifold; Riemann geometry; and more. It includes 133 solved exercises.