Geometries

Geometries PDF Author: Alekseĭ Bronislavovich Sosinskiĭ
Publisher: American Mathematical Soc.
ISBN: 082187571X
Category : Mathematics
Languages : en
Pages : 322

Get Book

Book Description
The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms ``toy geometries'', the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking this knowledge may refer to a compendium in Chapter 0. Per the author's predilection, the book contains very little regarding the axiomatic approach to geometry (save for a single chapter on the history of non-Euclidean geometry), but two Appendices provide a detailed treatment of Euclid's and Hilbert's axiomatics. Perhaps the most important aspect of this course is the problems, which appear at the end of each chapter and are supplemented with answers at the conclusion of the text. By analyzing and solving these problems, the reader will become capable of thinking and working geometrically, much more so than by simply learning the theory. Ultimately, the author makes the distinction between concrete mathematical objects called ``geometries'' and the singular ``geometry'', which he understands as a way of thinking about mathematics. Although the book does not address branches of mathematics and mathematical physics such as Riemannian and Kahler manifolds or, say, differentiable manifolds and conformal field theories, the ideology of category language and transformation groups on which the book is based prepares the reader for the study of, and eventually, research in these important and rapidly developing areas of contemporary mathematics.

Geometries

Geometries PDF Author: Alekseĭ Bronislavovich Sosinskiĭ
Publisher: American Mathematical Soc.
ISBN: 082187571X
Category : Mathematics
Languages : en
Pages : 322

Get Book

Book Description
The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms ``toy geometries'', the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking this knowledge may refer to a compendium in Chapter 0. Per the author's predilection, the book contains very little regarding the axiomatic approach to geometry (save for a single chapter on the history of non-Euclidean geometry), but two Appendices provide a detailed treatment of Euclid's and Hilbert's axiomatics. Perhaps the most important aspect of this course is the problems, which appear at the end of each chapter and are supplemented with answers at the conclusion of the text. By analyzing and solving these problems, the reader will become capable of thinking and working geometrically, much more so than by simply learning the theory. Ultimately, the author makes the distinction between concrete mathematical objects called ``geometries'' and the singular ``geometry'', which he understands as a way of thinking about mathematics. Although the book does not address branches of mathematics and mathematical physics such as Riemannian and Kahler manifolds or, say, differentiable manifolds and conformal field theories, the ideology of category language and transformation groups on which the book is based prepares the reader for the study of, and eventually, research in these important and rapidly developing areas of contemporary mathematics.

Geometries and Groups

Geometries and Groups PDF Author: Viacheslav V. Nikulin
Publisher: Springer Science & Business Media
ISBN: 9783540152811
Category : Mathematics
Languages : en
Pages : 268

Get Book

Book Description
This is a quite exceptional book, a lively and approachable treatment of an important field of mathematics given in a masterly style. Assuming only a school background, the authors develop locally Euclidean geometries, going as far as the modular space of structures on the torus, treated in terms of Lobachevsky's non-Euclidean geometry. Each section is carefully motivated by discussion of the physical and general scientific implications of the mathematical argument, and its place in the history of mathematics and philosophy. The book is expected to find a place alongside classics such as Hilbert and Cohn-Vossen's "Geometry and the imagination" and Weyl's "Symmetry".

Finite Geometries

Finite Geometries PDF Author: Aart Blokhuis
Publisher: Springer Science & Business Media
ISBN: 9780792369943
Category : Computers
Languages : en
Pages : 386

Get Book

Book Description
When? These are the proceedings of Finite Geometries, the Fourth Isle of Thorns Conference, which took place from Sunday 16 to Friday 21 July, 2000. It was organised by the editors of this volume. The Third Conference in 1990 was published as Advances in Finite Geometries and Designs by Oxford University Press and the Second Conference in 1980 was published as Finite Geometries and Designs by Cambridge University Press. The main speakers were A. R. Calderbank, P. J. Cameron, C. E. Praeger, B. Schmidt, H. Van Maldeghem. There were 64 participants and 42 contributions, all listed at the end of the volume. Conference web site http://www. maths. susx. ac. uk/Staff/JWPH/ Why? This collection of 21 articles describes the latest research and current state of the art in the following inter-linked areas: • combinatorial structures in finite projective and affine spaces, also known as Galois geometries, in which combinatorial objects such as blocking sets, spreads and partial spreads, ovoids, arcs and caps, as well as curves and hypersurfaces, are all of interest; • geometric and algebraic coding theory; • finite groups and incidence geometries, as in polar spaces, gener alized polygons and diagram geometries; • algebraic and geometric design theory, in particular designs which have interesting symmetric properties and difference sets, which play an important role, because of their close connections to both Galois geometry and coding theory.

Geometries on Surfaces

Geometries on Surfaces PDF Author: Burkard Polster
Publisher: Cambridge University Press
ISBN: 9780521660587
Category : Mathematics
Languages : en
Pages : 518

Get Book

Book Description
The projective, Möbius, Laguerre, and Minkowski planes over the real numbers are just a few examples of a host of fundamental classical topological geometries on surfaces. This book summarizes all known major results and open problems related to these classical point-line geometries and their close (nonclassical) relatives. Topics covered include: classical geometries; methods for constructing nonclassical geometries; classifications and characterizations of geometries. This work is related to many other fields including interpolation theory, convexity, the theory of pseudoline arrangements, topology, the theory of Lie groups, and many more. The authors detail these connections, some of which are well-known, but many much less so. Acting both as a reference for experts and as an accessible introduction for graduate students, this book will interest anyone wishing to know more about point-line geometries and the way they interact.

General Galois Geometries

General Galois Geometries PDF Author: James Hirschfeld
Publisher: Springer
ISBN: 1447167902
Category : Mathematics
Languages : en
Pages : 409

Get Book

Book Description
This book is the second edition of the third and last volume of a treatise on projective spaces over a finite field, also known as Galois geometries. This volume completes the trilogy comprised of plane case (first volume) and three dimensions (second volume). This revised edition includes much updating and new material. It is a mostly self-contained study of classical varieties over a finite field, related incidence structures and particular point sets in finite n-dimensional projective spaces. General Galois Geometries is suitable for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level.

Join Geometries

Join Geometries PDF Author: W. Prenowitz
Publisher: Springer Science & Business Media
ISBN: 1461394384
Category : Mathematics
Languages : en
Pages : 554

Get Book

Book Description
The main object of this book is to reorient and revitalize classical geometry in a way that will bring it closer to the mainstream of contemporary mathematics. The postulational basis of the subject will be radically revised in order to construct a broad-scale and conceptually unified treatment. The familiar figures of classical geometry-points, segments, lines, planes, triangles, circles, and so on-stem from problems in the physical world and seem to be conceptually unrelated. However, a natural setting for their study is provided by the concept of convex set, which is compara tively new in the history of geometrical ideas. The familiarfigures can then appear as convex sets, boundaries of convex sets, or finite unions of convex sets. Moreover, two basic types of figure in linear geometry are special cases of convex set: linear space (point, line, and plane) and halfspace (ray, halfplane, and halfspace). Therefore we choose convex set to be the central type of figure in our treatment of geometry. How can the wealth of geometric knowledge be organized around this idea? By defini tion, a set is convex if it contains the segment joining each pair of its points; that is, if it is closed under the operation of joining two points to form a segment. But this is precisely the basic operation in Euclid.

Mechanical Theorem Proving in Geometries

Mechanical Theorem Proving in Geometries PDF Author: Wen-tsün Wu
Publisher: Springer Science & Business Media
ISBN: 9783211825068
Category : Computers
Languages : en
Pages : 308

Get Book

Book Description
This book is a translation of Professor Wu’s seminal Chinese book of 1984 on Automated Geometric Theorem Proving. The translation was done by his former student Dongming Wang jointly with Xiaofan Jin so that authenticity is guaranteed. Meanwhile, automated geometric theorem proving based on Wu’s method of characteristic sets has become one of the fundamental, practically successful, methods in this area that has drastically enhanced the scope of what is computationally tractable in automated theorem proving. This book is a source book for students and researchers who want to study both the intuitive first ideas behind the method and the formal details together with many examples.

Parabolic Geometries I

Parabolic Geometries I PDF Author: Andreas Cap
Publisher: American Mathematical Soc.
ISBN: 0821826816
Category : Mathematics
Languages : en
Pages : 643

Get Book

Book Description
Discusses the equivalence between Cartan connections and underlying structures, including a complete proof of Kostant's version of the Bott - Borel - Weil theorem, which is used as an important tool. This book provides a description of the geometry and its basic invariants.

Finite Geometries and Combinatorial Designs

Finite Geometries and Combinatorial Designs PDF Author: Earl Sidney Kramer
Publisher: American Mathematical Soc.
ISBN: 0821851187
Category : Mathematics
Languages : en
Pages : 312

Get Book

Book Description
More than eighty participants from all over the world attended an AMS Special Session on Finite Geometries and Combinatorial Designs held in Lincoln, Nebraska, in the fall of 1987. This volume contains the proceedings of that Special Session, in addition to several invited papers. Employing state-of-the-art combinatorial and geometric methods, the papers show significant advances in this area. Topics range over finite geometry, combinatorial designs, their automorphism groups, and related structures. Requiring graduate-level background, this book is intended primarily for researchers in finite geometries and combinatorial designs. However, the interested nonspecialist will find that the book provides an excellent overview of current activity in these areas.

Finite Geometries

Finite Geometries PDF Author: Peter Dembowski
Publisher: Springer Science & Business Media
ISBN: 3642620124
Category : Mathematics
Languages : en
Pages : 394

Get Book

Book Description
Peter Dembowski was born in Berlin on April 1, 1928. After studying mathematics at the University of Frankfurt of Main, he pursued his graduate studies at Brown Unviersity and the University of Illinois, mainly with R. Baer. Dembowski returned to Frankfurt in 1956. Shortly before his premature death in January 1971, he had been appointed to a chair at the University of Tuebingen. Dembowski taught at the universities of Frankfurt and Tuebingen and - as visiting Professor - in London (Queen Mary College), Rome, and Madison, WI. Dembowski's chief research interest lay in the connections between finite geometries and group theory. His book "Finite Geometries" brought together essentially all that was known at that time about finite geometrical structures, including key results of the author, in a unified and structured perspective. This book became a standard reference as soon as it appeared in 1968. It influenced the expansion of combinatorial geometric research, and left its trace also in neighbouring areas.