Geometrical Foundations of Asymptotic Inference

Geometrical Foundations of Asymptotic Inference PDF Author: Robert E. Kass
Publisher: John Wiley & Sons
ISBN: 1118165977
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
Differential geometry provides an aesthetically appealing and oftenrevealing view of statistical inference. Beginning with anelementary treatment of one-parameter statistical models and endingwith an overview of recent developments, this is the first book toprovide an introduction to the subject that is largely accessibleto readers not already familiar with differential geometry. It alsogives a streamlined entry into the field to readers with richermathematical backgrounds. Much space is devoted to curvedexponential families, which are of interest not only because theymay be studied geometrically but also because they are analyticallyconvenient, so that results may be derived rigorously. In addition,several appendices provide useful mathematical material on basicconcepts in differential geometry. Topics covered include thefollowing: * Basic properties of curved exponential families * Elements of second-order, asymptotic theory * The Fisher-Efron-Amari theory of information loss and recovery * Jeffreys-Rao information-metric Riemannian geometry * Curvature measures of nonlinearity * Geometrically motivated diagnostics for exponential familyregression * Geometrical theory of divergence functions * A classification of and introduction to additional work in thefield

Geometrical Foundations of Asymptotic Inference

Geometrical Foundations of Asymptotic Inference PDF Author: Robert E. Kass
Publisher: John Wiley & Sons
ISBN: 1118165977
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
Differential geometry provides an aesthetically appealing and oftenrevealing view of statistical inference. Beginning with anelementary treatment of one-parameter statistical models and endingwith an overview of recent developments, this is the first book toprovide an introduction to the subject that is largely accessibleto readers not already familiar with differential geometry. It alsogives a streamlined entry into the field to readers with richermathematical backgrounds. Much space is devoted to curvedexponential families, which are of interest not only because theymay be studied geometrically but also because they are analyticallyconvenient, so that results may be derived rigorously. In addition,several appendices provide useful mathematical material on basicconcepts in differential geometry. Topics covered include thefollowing: * Basic properties of curved exponential families * Elements of second-order, asymptotic theory * The Fisher-Efron-Amari theory of information loss and recovery * Jeffreys-Rao information-metric Riemannian geometry * Curvature measures of nonlinearity * Geometrically motivated diagnostics for exponential familyregression * Geometrical theory of divergence functions * A classification of and introduction to additional work in thefield

Geometrical Foundations of Asymptotic Inference

Geometrical Foundations of Asymptotic Inference PDF Author: Robert E. Kass
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
Differential geometry provides an aesthetically appealing and often revealing view of statistical inference. Beginning with an elementary treatment of one-parameter statistical models and ending with an overview of recent developments, this is the first book to provide an introduction to the subject that is largely accessible to readers not already familiar with differential geometry. It also gives a streamlined entry into the field to readers with richer mathematical backgrounds. Much space is devoted to curved exponential families, which are of interest not only because they may be studied geometrically but also because they are analytically convenient, so that results may be derived rigorously. In addition, several appendices provide useful mathematical material on basic concepts in differential geometry. Topics covered include the following: Basic properties of curved exponential families Elements of second-order, asymptotic theory The Fisher-Efron-Amari theory of information loss and recovery Jeffreys-Rao information-metric Riemannian geometry Curvature measures of nonlinearity Geometrically motivated diagnostics for exponential family regression Geometrical theory of divergence functions A classification of and introduction to additional work in the field

Differential-Geometrical Methods in Statistics

Differential-Geometrical Methods in Statistics PDF Author: Shun-ichi Amari
Publisher: Springer Science & Business Media
ISBN: 1461250560
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
From the reviews: "In this Lecture Note volume the author describes his differential-geometric approach to parametrical statistical problems summarizing the results he had published in a series of papers in the last five years. The author provides a geometric framework for a special class of test and estimation procedures for curved exponential families. ... ... The material and ideas presented in this volume are important and it is recommended to everybody interested in the connection between statistics and geometry ..." #Metrika#1 "More than hundred references are given showing the growing interest in differential geometry with respect to statistics. The book can only strongly be recommended to a geodesist since it offers many new insights into statistics on a familiar ground." #Manuscripta Geodaetica#2

Geometric Modeling in Probability and Statistics

Geometric Modeling in Probability and Statistics PDF Author: Ovidiu Calin
Publisher: Springer
ISBN: 3319077791
Category : Mathematics
Languages : en
Pages : 389

Get Book Here

Book Description
This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader will understand a flourishing field of mathematics in which very few books have been written so far.

Asymptotic Theory Of Quantum Statistical Inference: Selected Papers

Asymptotic Theory Of Quantum Statistical Inference: Selected Papers PDF Author: Masahito Hayashi
Publisher: World Scientific
ISBN: 981448198X
Category : Science
Languages : en
Pages : 553

Get Book Here

Book Description
Quantum statistical inference, a research field with deep roots in the foundations of both quantum physics and mathematical statistics, has made remarkable progress since 1990. In particular, its asymptotic theory has been developed during this period. However, there has hitherto been no book covering this remarkable progress after 1990; the famous textbooks by Holevo and Helstrom deal only with research results in the earlier stage (1960s-1970s).This book presents the important and recent results of quantum statistical inference. It focuses on the asymptotic theory, which is one of the central issues of mathematical statistics and had not been investigated in quantum statistical inference until the early 1980s. It contains outstanding papers after Holevo's textbook, some of which are of great importance but are not available now.The reader is expected to have only elementary mathematical knowledge, and therefore much of the content will be accessible to graduate students as well as research workers in related fields. Introductions to quantum statistical inference have been specially written for the book. Asymptotic Theory of Quantum Statistical Inference: Selected Papers will give the reader a new insight into physics and statistical inference.

Geometric and Topological Inference

Geometric and Topological Inference PDF Author: Jean-Daniel Boissonnat
Publisher: Cambridge University Press
ISBN: 1108419399
Category : Computers
Languages : en
Pages : 247

Get Book Here

Book Description
A rigorous introduction to geometric and topological inference, for anyone interested in a geometric approach to data science.

A Course in Time Series Analysis

A Course in Time Series Analysis PDF Author: Daniel Peña
Publisher: John Wiley & Sons
ISBN: 1118031229
Category : Mathematics
Languages : en
Pages : 494

Get Book Here

Book Description
New statistical methods and future directions of research in time series A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, and signal extraction. They then move on to advanced topics, focusing on heteroscedastic models, nonlinear time series models, Bayesian time series analysis, nonparametric time series analysis, and neural networks. Multivariate time series coverage includes presentations on vector ARMA models, cointegration, and multivariate linear systems. Special features include: Contributions from eleven of the worldâ??s leading figures in time series Shared balance between theory and application Exercise series sets Many real data examples Consistent style and clear, common notation in all contributions 60 helpful graphs and tables Requiring no previous knowledge of the subject, A Course in Time Series Analysis is an important reference and a highly useful resource for researchers and practitioners in statistics, economics, business, engineering, and environmental analysis. An Instructor's Manual presenting detailed solutions to all the problems in he book is available upon request from the Wiley editorial department.

Bayesian Theory

Bayesian Theory PDF Author: José M. Bernardo
Publisher: John Wiley & Sons
ISBN: 047031771X
Category : Mathematics
Languages : en
Pages : 608

Get Book Here

Book Description
This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics

An Introduction to Probability and Statistics

An Introduction to Probability and Statistics PDF Author: Vijay K. Rohatgi
Publisher: John Wiley & Sons
ISBN: 1118165683
Category : Mathematics
Languages : en
Pages : 747

Get Book Here

Book Description
The second edition of a well-received book that was published 24 years ago and continues to sell to this day, An Introduction to Probability and Statistics is now revised to incorporate new information as well as substantial updates of existing material.

Biostatistical Methods

Biostatistical Methods PDF Author: John M. Lachin
Publisher: John Wiley & Sons
ISBN: 0470317892
Category : Mathematics
Languages : en
Pages : 568

Get Book Here

Book Description
Comprehensive coverage of classical and modern methods of biostatistics Biostatistical Methods focuses on the assessment of risks and relative risks on the basis of clinical investigations. It develops basic concepts and derives biostatistical methods through both the application of classical mathematical statistical tools and more modern likelihood-based theories. The first half of the book presents methods for the analysis of single and multiple 2x2 tables for cross-sectional, prospective, and retrospective (case-control) sampling, with and without matching using fixed and two-stage random effects models. The text then moves on to present a more modern likelihood- or model-based approach, which includes unconditional and conditional logistic regression; the analysis of count data and the Poisson regression model; and the analysis of event time data, including the proportional hazards and multiplicative intensity models. The book contains a technical appendix that presents the core mathematical statistical theory used for the development of classical and modern statistical methods. Biostatistical Methods: The Assessment of Relative Risks: * Presents modern biostatistical methods that are generalizations of the classical methods discussed * Emphasizes derivations, not just cookbook methods * Provides copious reference citations for further reading * Includes extensive problem sets * Employs case studies to illustrate application of methods * Illustrates all methods using the Statistical Analysis System(r) (SAS) Supplemented with numerous graphs, charts, and tables as well as a Web site for larger data sets and exercises, Biostatistical Methods: The Assessment of Relative Risks is an excellent guide for graduate-level students in biostatistics and an invaluable reference for biostatisticians, applied statisticians, and epidemiologists.