Author: Anand Pillay
Publisher: Oxford University Press on Demand
ISBN: 9780198534372
Category : Language Arts & Disciplines
Languages : en
Pages : 361
Book Description
This book is an exposition of the central features of one of the most developed and sophisticated parts of modern model theory. Geometric stability theory studies the fine structure of models of stable theories. An ever present theme is the existence and structure of definable groups.Fundamental applications to a classification theory are included in the text. Recent years have seen other surprising applications to, among other things, diophantine geometry. This book will be invaluable to anyone interested in modern model theory, such as working model theorists and graduatestudents in logic.
Geometric Stability Theory
Author: Anand Pillay
Publisher: Oxford University Press on Demand
ISBN: 9780198534372
Category : Language Arts & Disciplines
Languages : en
Pages : 361
Book Description
This book is an exposition of the central features of one of the most developed and sophisticated parts of modern model theory. Geometric stability theory studies the fine structure of models of stable theories. An ever present theme is the existence and structure of definable groups.Fundamental applications to a classification theory are included in the text. Recent years have seen other surprising applications to, among other things, diophantine geometry. This book will be invaluable to anyone interested in modern model theory, such as working model theorists and graduatestudents in logic.
Publisher: Oxford University Press on Demand
ISBN: 9780198534372
Category : Language Arts & Disciplines
Languages : en
Pages : 361
Book Description
This book is an exposition of the central features of one of the most developed and sophisticated parts of modern model theory. Geometric stability theory studies the fine structure of models of stable theories. An ever present theme is the existence and structure of definable groups.Fundamental applications to a classification theory are included in the text. Recent years have seen other surprising applications to, among other things, diophantine geometry. This book will be invaluable to anyone interested in modern model theory, such as working model theorists and graduatestudents in logic.
Geometric Theory of Dynamical Systems
Author: J. Jr. Palis
Publisher: Springer Science & Business Media
ISBN: 1461257034
Category : Mathematics
Languages : en
Pages : 208
Book Description
... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.
Publisher: Springer Science & Business Media
ISBN: 1461257034
Category : Mathematics
Languages : en
Pages : 208
Book Description
... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.
Classification Theory
Author: S. Shelah
Publisher: Elsevier
ISBN: 008088024X
Category : Computers
Languages : en
Pages : 741
Book Description
In this research monograph, the author's work on classification and related topics are presented. This revised edition brings the book up to date with the addition of four new chapters as well as various corrections to the 1978 text.The additional chapters X - XIII present the solution to countable first order T of what the author sees as the main test of the theory. In Chapter X the Dimensional Order Property is introduced and it is shown to be a meaningful dividing line for superstable theories. In Chapter XI there is a proof of the decomposition theorems. Chapter XII is the crux of the matter: there is proof that the negation of the assumption used in Chapter XI implies that in models of T a relation can be defined which orders a large subset of m
Publisher: Elsevier
ISBN: 008088024X
Category : Computers
Languages : en
Pages : 741
Book Description
In this research monograph, the author's work on classification and related topics are presented. This revised edition brings the book up to date with the addition of four new chapters as well as various corrections to the 1978 text.The additional chapters X - XIII present the solution to countable first order T of what the author sees as the main test of the theory. In Chapter X the Dimensional Order Property is introduced and it is shown to be a meaningful dividing line for superstable theories. In Chapter XI there is a proof of the decomposition theorems. Chapter XII is the crux of the matter: there is proof that the negation of the assumption used in Chapter XI implies that in models of T a relation can be defined which orders a large subset of m
Geometric Theory of Discrete Nonautonomous Dynamical Systems
Author: Christian Pötzsche
Publisher: Springer Science & Business Media
ISBN: 3642142575
Category : Mathematics
Languages : en
Pages : 422
Book Description
The goal of this book is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes).
Publisher: Springer Science & Business Media
ISBN: 3642142575
Category : Mathematics
Languages : en
Pages : 422
Book Description
The goal of this book is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes).
Finite Structures with Few Types
Author: Gregory L. Cherlin
Publisher: Princeton University Press
ISBN: 9780691113319
Category : Mathematics
Languages : en
Pages : 204
Book Description
This book applies model theoretic methods to the study of certain finite permutation groups, the automorphism groups of structures for a fixed finite language with a bounded number of orbits on 4-tuples. Primitive permutation groups of this type have been classified by Kantor, Liebeck, and Macpherson, using the classification of the finite simple groups. Building on this work, Gregory Cherlin and Ehud Hrushovski here treat the general case by developing analogs of the model theoretic methods of geometric stability theory. The work lies at the juncture of permutation group theory, model theory, classical geometries, and combinatorics. The principal results are finite theorems, an associated analysis of computational issues, and an "intrinsic" characterization of the permutation groups (or finite structures) under consideration. The main finiteness theorem shows that the structures under consideration fall naturally into finitely many families, with each family parametrized by finitely many numerical invariants (dimensions of associated coordinating geometries). The authors provide a case study in the extension of methods of stable model theory to a nonstable context, related to work on Shelah's "simple theories." They also generalize Lachlan's results on stable homogeneous structures for finite relational languages, solving problems of effectivity left open by that case. Their methods involve the analysis of groups interpretable in these structures, an analog of Zilber's envelopes, and the combinatorics of the underlying geometries. Taking geometric stability theory into new territory, this book is for mathematicians interested in model theory and group theory.
Publisher: Princeton University Press
ISBN: 9780691113319
Category : Mathematics
Languages : en
Pages : 204
Book Description
This book applies model theoretic methods to the study of certain finite permutation groups, the automorphism groups of structures for a fixed finite language with a bounded number of orbits on 4-tuples. Primitive permutation groups of this type have been classified by Kantor, Liebeck, and Macpherson, using the classification of the finite simple groups. Building on this work, Gregory Cherlin and Ehud Hrushovski here treat the general case by developing analogs of the model theoretic methods of geometric stability theory. The work lies at the juncture of permutation group theory, model theory, classical geometries, and combinatorics. The principal results are finite theorems, an associated analysis of computational issues, and an "intrinsic" characterization of the permutation groups (or finite structures) under consideration. The main finiteness theorem shows that the structures under consideration fall naturally into finitely many families, with each family parametrized by finitely many numerical invariants (dimensions of associated coordinating geometries). The authors provide a case study in the extension of methods of stable model theory to a nonstable context, related to work on Shelah's "simple theories." They also generalize Lachlan's results on stable homogeneous structures for finite relational languages, solving problems of effectivity left open by that case. Their methods involve the analysis of groups interpretable in these structures, an analog of Zilber's envelopes, and the combinatorics of the underlying geometries. Taking geometric stability theory into new territory, this book is for mathematicians interested in model theory and group theory.
Hydrodynamic stability theory
Author: A. Georgescu
Publisher: Springer Science & Business Media
ISBN: 9401718148
Category : Mathematics
Languages : en
Pages : 306
Book Description
The great number of varied approaches to hydrodynamic stability theory appear as a bulk of results whose classification and discussion are well-known in the literature. Several books deal with one aspect of this theory alone (e.g. the linear case, the influence of temperature and magnetic field, large classes of globally stable fluid motions etc.). The aim of this book is to provide a complete mathe matical treatment of hydrodynamic stability theory by combining the early results of engineers and applied mathematicians with the recent achievements of pure mathematicians. In order to ensure a more operational frame to this theory I have briefly outlined the main results concerning the stability of the simplest types of flow. I have attempted several definitions of the stability of fluid flows with due consideration of the connections between them. On the other hand, as the large number of initial and boundary value problems in hydrodynamic stability theory requires appropriate treat ments, most of this book is devoted to the main concepts and methods used in hydrodynamic stability theory. Open problems are expressed in both mathematical and physical terms.
Publisher: Springer Science & Business Media
ISBN: 9401718148
Category : Mathematics
Languages : en
Pages : 306
Book Description
The great number of varied approaches to hydrodynamic stability theory appear as a bulk of results whose classification and discussion are well-known in the literature. Several books deal with one aspect of this theory alone (e.g. the linear case, the influence of temperature and magnetic field, large classes of globally stable fluid motions etc.). The aim of this book is to provide a complete mathe matical treatment of hydrodynamic stability theory by combining the early results of engineers and applied mathematicians with the recent achievements of pure mathematicians. In order to ensure a more operational frame to this theory I have briefly outlined the main results concerning the stability of the simplest types of flow. I have attempted several definitions of the stability of fluid flows with due consideration of the connections between them. On the other hand, as the large number of initial and boundary value problems in hydrodynamic stability theory requires appropriate treat ments, most of this book is devoted to the main concepts and methods used in hydrodynamic stability theory. Open problems are expressed in both mathematical and physical terms.
Structural Stability Theory and Practice
Author: Sukhvarsh Jerath
Publisher: John Wiley & Sons
ISBN: 1119694493
Category : Technology & Engineering
Languages : en
Pages : 674
Book Description
Discover the theory of structural stability and its applications in crucial areas in engineering Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shells combines necessary information on structural stability into a single, comprehensive resource suitable for practicing engineers and students alike. Written in both US and SI units, this invaluable guide is perfect for readers within and outside of the US. Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shell offers: Detailed and patiently developed mathematical derivations and thorough explanations Energy methods that are incorporated throughout the chapters Connections between theory, design specifications and solutions The latest codes and standards from the American Institute of Steel Construction (AISC), Canadian Standards Association (CSA), Australian Standards (SAA), Structural Stability Research Council (SSRC), and Eurocode 3 Solved and unsolved practice-oriented problems in every chapter, with a solutions manual for unsolved problems included for instructors Ideal for practicing professionals in civil, mechanical, and aerospace engineering, as well as upper-level undergraduates and graduate students in structural engineering courses, Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shell provides readers with detailed mathematical derivations along with thorough explanations and practical examples.
Publisher: John Wiley & Sons
ISBN: 1119694493
Category : Technology & Engineering
Languages : en
Pages : 674
Book Description
Discover the theory of structural stability and its applications in crucial areas in engineering Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shells combines necessary information on structural stability into a single, comprehensive resource suitable for practicing engineers and students alike. Written in both US and SI units, this invaluable guide is perfect for readers within and outside of the US. Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shell offers: Detailed and patiently developed mathematical derivations and thorough explanations Energy methods that are incorporated throughout the chapters Connections between theory, design specifications and solutions The latest codes and standards from the American Institute of Steel Construction (AISC), Canadian Standards Association (CSA), Australian Standards (SAA), Structural Stability Research Council (SSRC), and Eurocode 3 Solved and unsolved practice-oriented problems in every chapter, with a solutions manual for unsolved problems included for instructors Ideal for practicing professionals in civil, mechanical, and aerospace engineering, as well as upper-level undergraduates and graduate students in structural engineering courses, Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shell provides readers with detailed mathematical derivations along with thorough explanations and practical examples.
Geometric Theory of Semilinear Parabolic Equations
Author: Daniel Henry
Publisher: Springer
ISBN: 3540385282
Category : Mathematics
Languages : en
Pages : 353
Book Description
Publisher: Springer
ISBN: 3540385282
Category : Mathematics
Languages : en
Pages : 353
Book Description
Geometrical Methods in the Theory of Ordinary Differential Equations
Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 1461210372
Category : Mathematics
Languages : en
Pages : 366
Book Description
Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.
Publisher: Springer Science & Business Media
ISBN: 1461210372
Category : Mathematics
Languages : en
Pages : 366
Book Description
Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.
An Introduction to Stability Theory
Author: Anand Pillay
Publisher: Courier Corporation
ISBN: 0486150437
Category : Mathematics
Languages : en
Pages : 164
Book Description
This introductory treatment covers the basic concepts and machinery of stability theory. Lemmas, corollaries, proofs, and notes assist readers in working through and understanding the material and applications. Full of examples, theorems, propositions, and problems, it is suitable for graduate students in logic and mathematics, professional mathematicians, and computer scientists. Chapter 1 introduces the notions of definable type, heir, and coheir. A discussion of stability and order follows, along with definitions of forking that follow the approach of Lascar and Poizat, plus a consideration of forking and the definability of types. Subsequent chapters examine superstability, dividing and ranks, the relation between types and sets of indiscernibles, and further properties of stable theories. The text concludes with proofs of the theorems of Morley and Baldwin-Lachlan and an extension of dimension theory that incorporates orthogonality of types in addition to regular types.
Publisher: Courier Corporation
ISBN: 0486150437
Category : Mathematics
Languages : en
Pages : 164
Book Description
This introductory treatment covers the basic concepts and machinery of stability theory. Lemmas, corollaries, proofs, and notes assist readers in working through and understanding the material and applications. Full of examples, theorems, propositions, and problems, it is suitable for graduate students in logic and mathematics, professional mathematicians, and computer scientists. Chapter 1 introduces the notions of definable type, heir, and coheir. A discussion of stability and order follows, along with definitions of forking that follow the approach of Lascar and Poizat, plus a consideration of forking and the definability of types. Subsequent chapters examine superstability, dividing and ranks, the relation between types and sets of indiscernibles, and further properties of stable theories. The text concludes with proofs of the theorems of Morley and Baldwin-Lachlan and an extension of dimension theory that incorporates orthogonality of types in addition to regular types.