Geometric Properties of Banach Spaces and Nonlinear Iterations

Geometric Properties of Banach Spaces and Nonlinear Iterations PDF Author: Charles Chidume
Publisher: Springer Science & Business Media
ISBN: 1848821891
Category : Mathematics
Languages : en
Pages : 337

Get Book Here

Book Description
The contents of this monograph fall within the general area of nonlinear functional analysis and applications. We focus on an important topic within this area: geometric properties of Banach spaces and nonlinear iterations, a topic of intensive research e?orts, especially within the past 30 years, or so. In this theory, some geometric properties of Banach spaces play a crucial role. In the ?rst part of the monograph, we expose these geometric properties most of which are well known. As is well known, among all in?nite dim- sional Banach spaces, Hilbert spaces have the nicest geometric properties. The availability of the inner product, the fact that the proximity map or nearest point map of a real Hilbert space H onto a closed convex subset K of H is Lipschitzian with constant 1, and the following two identities 2 2 2 ||x+y|| =||x|| +2 x,y +||y|| , (?) 2 2 2 2 ||?x+(1??)y|| = ?||x|| +(1??)||y|| ??(1??)||x?y|| , (??) which hold for all x,y? H, are some of the geometric properties that char- terize inner product spaces and also make certain problems posed in Hilbert spaces more manageable than those in general Banach spaces. However, as has been rightly observed by M. Hazewinkel, “... many, and probably most, mathematical objects and models do not naturally live in Hilbert spaces”. Consequently,toextendsomeoftheHilbertspacetechniquestomoregeneral Banach spaces, analogues of the identities (?) and (??) have to be developed.

Geometric Properties of Banach Spaces and Nonlinear Iterations

Geometric Properties of Banach Spaces and Nonlinear Iterations PDF Author: Charles Chidume
Publisher: Springer Science & Business Media
ISBN: 1848821891
Category : Mathematics
Languages : en
Pages : 337

Get Book Here

Book Description
The contents of this monograph fall within the general area of nonlinear functional analysis and applications. We focus on an important topic within this area: geometric properties of Banach spaces and nonlinear iterations, a topic of intensive research e?orts, especially within the past 30 years, or so. In this theory, some geometric properties of Banach spaces play a crucial role. In the ?rst part of the monograph, we expose these geometric properties most of which are well known. As is well known, among all in?nite dim- sional Banach spaces, Hilbert spaces have the nicest geometric properties. The availability of the inner product, the fact that the proximity map or nearest point map of a real Hilbert space H onto a closed convex subset K of H is Lipschitzian with constant 1, and the following two identities 2 2 2 ||x+y|| =||x|| +2 x,y +||y|| , (?) 2 2 2 2 ||?x+(1??)y|| = ?||x|| +(1??)||y|| ??(1??)||x?y|| , (??) which hold for all x,y? H, are some of the geometric properties that char- terize inner product spaces and also make certain problems posed in Hilbert spaces more manageable than those in general Banach spaces. However, as has been rightly observed by M. Hazewinkel, “... many, and probably most, mathematical objects and models do not naturally live in Hilbert spaces”. Consequently,toextendsomeoftheHilbertspacetechniquestomoregeneral Banach spaces, analogues of the identities (?) and (??) have to be developed.

Substitution Dynamical Systems - Spectral Analysis

Substitution Dynamical Systems - Spectral Analysis PDF Author: Martine Queffélec
Publisher: Springer
ISBN: 3642112129
Category : Mathematics
Languages : en
Pages : 367

Get Book Here

Book Description
This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many readers will benefit from the introductory chapters on the spectral theory of dynamical systems; others will find complements on the spectral study of bounded sequences; finally, a very basic presentation of substitutions, together with some recent findings and questions, rounds out the book.

Introduction to Complex Reflection Groups and Their Braid Groups

Introduction to Complex Reflection Groups and Their Braid Groups PDF Author: Michel Broué
Publisher: Springer
ISBN: 3642111750
Category : Mathematics
Languages : en
Pages : 150

Get Book Here

Book Description
This book covers basic properties of complex reflection groups, such as characterization, Steinberg theorem, Gutkin-Opdam matrices, Solomon theorem and applications, including the basic findings of Springer theory on eigenspaces.

Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems

Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems PDF Author: Torsten Linß
Publisher: Springer
ISBN: 3642051340
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
This is a book on numerical methods for singular perturbation problems – in part- ular, stationary reaction-convection-diffusion problems exhibiting layer behaviour. More precisely, it is devoted to the construction and analysis of layer-adapted meshes underlying these numerical methods. Numerical methods for singularly perturbed differential equations have been studied since the early 1970s and the research frontier has been constantly - panding since. A comprehensive exposition of the state of the art in the analysis of numerical methods for singular perturbation problems is [141] which was p- lished in 2008. As that monograph covers a big variety of numerical methods, it only contains a rather short introduction to layer-adapted meshes, while the present book is exclusively dedicated to that subject. An early important contribution towards the optimisation of numerical methods by means of special meshes was made by N.S. Bakhvalov [18] in 1969. His paper spawned a lively discussion in the literature with a number of further meshes - ing proposed and applied to various singular perturbation problems. However, in the mid 1980s, this development stalled, but was enlivened again by G.I. Shishkin’s proposal of piecewise-equidistant meshes in the early 1990s [121,150]. Because of their very simple structure, they are often much easier to analyse than other meshes, although they give numerical approximations that are inferior to solutions on c- peting meshes. Shishkin meshes for numerous problems and numerical methods have been studied since and they are still very much in vogue.

Ultrafilters Throughout Mathematics

Ultrafilters Throughout Mathematics PDF Author: Isaac Goldbring
Publisher: American Mathematical Society
ISBN: 1470469618
Category : Mathematics
Languages : en
Pages : 421

Get Book Here

Book Description
Ultrafilters and ultraproducts provide a useful generalization of the ordinary limit processes which have applications to many areas of mathematics. Typically, this topic is presented to students in specialized courses such as logic, functional analysis, or geometric group theory. In this book, the basic facts about ultrafilters and ultraproducts are presented to readers with no prior knowledge of the subject and then these techniques are applied to a wide variety of topics. The first part of the book deals solely with ultrafilters and presents applications to voting theory, combinatorics, and topology, while also dealing also with foundational issues. The second part presents the classical ultraproduct construction and provides applications to algebra, number theory, and nonstandard analysis. The third part discusses a metric generalization of the ultraproduct construction and gives example applications to geometric group theory and functional analysis. The final section returns to more advanced topics of a more foundational nature. The book should be of interest to undergraduates, graduate students, and researchers from all areas of mathematics interested in learning how ultrafilters and ultraproducts can be applied to their specialty.

Sobolev Gradients and Differential Equations

Sobolev Gradients and Differential Equations PDF Author: john neuberger
Publisher: Springer
ISBN: 3642040411
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair portion of the material have in the past been able to use the theory on their own applications and also gain an appreciation of the possibility of a rather comprehensive point of view on the subject of partial differential equations.

Blocks and Families for Cyclotomic Hecke Algebras

Blocks and Families for Cyclotomic Hecke Algebras PDF Author: Maria Chlouveraki
Publisher: Springer
ISBN: 3642030645
Category : Mathematics
Languages : en
Pages : 173

Get Book Here

Book Description
This volume offers a thorough study of symmetric algebras, covering topics such as block theory, representation theory and Clifford theory. It can also serve as an introduction to the Hecke algebras of complex reflection groups.

Mathematical Modeling in Biomedical Imaging I

Mathematical Modeling in Biomedical Imaging I PDF Author: Habib Ammari
Publisher: Springer Science & Business Media
ISBN: 3642034438
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.

Stochastic Analysis in Discrete and Continuous Settings

Stochastic Analysis in Discrete and Continuous Settings PDF Author: Nicolas Privault
Publisher: Springer
ISBN: 3642023800
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
This monograph is an introduction to some aspects of stochastic analysis in the framework of normal martingales, in both discrete and continuous time. The text is mostly self-contained, except for Section 5.7 that requires some background in geometry, and should be accessible to graduate students and researchers having already received a basic training in probability. Prereq- sites are mostly limited to a knowledge of measure theory and probability, namely?-algebras,expectations,andconditionalexpectations.Ashortint- duction to stochastic calculus for continuous and jump processes is given in Chapter 2 using normal martingales, whose predictable quadratic variation is the Lebesgue measure. There already exists several books devoted to stochastic analysis for c- tinuous di?usion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63], [65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular f- ture of this text is to simultaneously consider continuous processes and jump processes in the uni?ed framework of normal martingales.

Boundary Value Problems and Markov Processes

Boundary Value Problems and Markov Processes PDF Author: Kazuaki Taira
Publisher: Springer
ISBN: 3642016774
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
This is a thorough and accessible exposition on the functional analytic approach to the problem of construction of Markov processes with Ventcel’ boundary conditions in probability theory. It presents new developments in the theory of singular integrals.