Author: Alexander Cardona
Publisher: World Scientific
ISBN: 9789812705068
Category : Mathematics
Languages : en
Pages : 500
Book Description
This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.
Proceedings of the Summer School Geometric and Topological Methods for Quantum Field Theory
Author: Alexander Cardona
Publisher: World Scientific
ISBN: 9789812705068
Category : Mathematics
Languages : en
Pages : 500
Book Description
This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.
Publisher: World Scientific
ISBN: 9789812705068
Category : Mathematics
Languages : en
Pages : 500
Book Description
This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.
Geometric And Topological Methods For Quantum Field Theory - Proceedings Of The Summer School
Author: Alexander Cardona
Publisher: World Scientific
ISBN: 9814487678
Category : Mathematics
Languages : en
Pages : 495
Book Description
This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.
Publisher: World Scientific
ISBN: 9814487678
Category : Mathematics
Languages : en
Pages : 495
Book Description
This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.
Geometric and Topological Methods for Quantum Field Theory
Author: Alexander Cardona
Publisher: Cambridge University Press
ISBN: 1107355192
Category : Science
Languages : en
Pages : 395
Book Description
Based on lectures given at the renowned Villa de Leyva summer school, this book provides a unique presentation of modern geometric methods in quantum field theory. Written by experts, it enables readers to enter some of the most fascinating research topics in this subject. Covering a series of topics on geometry, topology, algebra, number theory methods and their applications to quantum field theory, the book covers topics such as Dirac structures, holomorphic bundles and stability, Feynman integrals, geometric aspects of quantum field theory and the standard model, spectral and Riemannian geometry and index theory. This is a valuable guide for graduate students and researchers in physics and mathematics wanting to enter this interesting research field at the borderline between mathematics and physics.
Publisher: Cambridge University Press
ISBN: 1107355192
Category : Science
Languages : en
Pages : 395
Book Description
Based on lectures given at the renowned Villa de Leyva summer school, this book provides a unique presentation of modern geometric methods in quantum field theory. Written by experts, it enables readers to enter some of the most fascinating research topics in this subject. Covering a series of topics on geometry, topology, algebra, number theory methods and their applications to quantum field theory, the book covers topics such as Dirac structures, holomorphic bundles and stability, Feynman integrals, geometric aspects of quantum field theory and the standard model, spectral and Riemannian geometry and index theory. This is a valuable guide for graduate students and researchers in physics and mathematics wanting to enter this interesting research field at the borderline between mathematics and physics.
Geometric and Topological Methods for Quantum Field Theory
Author: Hernan Ocampo
Publisher: Cambridge University Press
ISBN: 113948673X
Category : Science
Languages : en
Pages : 435
Book Description
Aimed at graduate students in physics and mathematics, this book provides an introduction to recent developments in several active topics at the interface between algebra, geometry, topology and quantum field theory. The first part of the book begins with an account of important results in geometric topology. It investigates the differential equation aspects of quantum cohomology, before moving on to noncommutative geometry. This is followed by a further exploration of quantum field theory and gauge theory, describing AdS/CFT correspondence, and the functional renormalization group approach to quantum gravity. The second part covers a wide spectrum of topics on the borderline of mathematics and physics, ranging from orbifolds to quantum indistinguishability and involving a manifold of mathematical tools borrowed from geometry, algebra and analysis. Each chapter presents introductory material before moving on to more advanced results. The chapters are self-contained and can be read independently of the rest.
Publisher: Cambridge University Press
ISBN: 113948673X
Category : Science
Languages : en
Pages : 435
Book Description
Aimed at graduate students in physics and mathematics, this book provides an introduction to recent developments in several active topics at the interface between algebra, geometry, topology and quantum field theory. The first part of the book begins with an account of important results in geometric topology. It investigates the differential equation aspects of quantum cohomology, before moving on to noncommutative geometry. This is followed by a further exploration of quantum field theory and gauge theory, describing AdS/CFT correspondence, and the functional renormalization group approach to quantum gravity. The second part covers a wide spectrum of topics on the borderline of mathematics and physics, ranging from orbifolds to quantum indistinguishability and involving a manifold of mathematical tools borrowed from geometry, algebra and analysis. Each chapter presents introductory material before moving on to more advanced results. The chapters are self-contained and can be read independently of the rest.
Geometric, Algebraic And Topological Methods For Quantum Field Theory - Proceedings Of The 2013 Villa De Leyva Summer School
Author: Alexander Cardona
Publisher: World Scientific
ISBN: 9814730890
Category : Mathematics
Languages : en
Pages : 385
Book Description
Based on lectures held at the 8th edition of the series of summer schools in Villa de Leyva since 1999, this book presents an introduction to topics of current interest at the interface of geometry, algebra, analysis, topology and theoretical physics. It is aimed at graduate students and researchers in physics or mathematics, and offers an introduction to the topics discussed in the two weeks of the summer school: operator algebras, conformal field theory, black holes, relativistic fluids, Lie groupoids and Lie algebroids, renormalization methods, spectral geometry and index theory for pseudo-differential operators.
Publisher: World Scientific
ISBN: 9814730890
Category : Mathematics
Languages : en
Pages : 385
Book Description
Based on lectures held at the 8th edition of the series of summer schools in Villa de Leyva since 1999, this book presents an introduction to topics of current interest at the interface of geometry, algebra, analysis, topology and theoretical physics. It is aimed at graduate students and researchers in physics or mathematics, and offers an introduction to the topics discussed in the two weeks of the summer school: operator algebras, conformal field theory, black holes, relativistic fluids, Lie groupoids and Lie algebroids, renormalization methods, spectral geometry and index theory for pseudo-differential operators.
Geometric, Algebraic and Topological Methods for Quantum Field Theory
Author: Sylvie Payche
Publisher: World Scientific
ISBN: 9814460052
Category : Science
Languages : en
Pages : 378
Book Description
Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory. This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.
Publisher: World Scientific
ISBN: 9814460052
Category : Science
Languages : en
Pages : 378
Book Description
Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory. This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.
Periods in Quantum Field Theory and Arithmetic
Author: José Ignacio Burgos Gil
Publisher: Springer Nature
ISBN: 3030370313
Category : Mathematics
Languages : en
Pages : 631
Book Description
This book is the outcome of research initiatives formed during the special ``Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory'' at the ICMAT (Instituto de Ciencias Matemáticas, Madrid) in 2014. The activity was aimed at understanding and deepening recent developments where Feynman and string amplitudes on the one hand, and periods and multiple zeta values on the other, have been at the heart of lively and fruitful interactions between theoretical physics and number theory over the past few decades. In this book, the reader will find research papers as well as survey articles, including open problems, on the interface between number theory, quantum field theory and string theory, written by leading experts in the respective fields. Topics include, among others, elliptic periods viewed from both a mathematical and a physical standpoint; further relations between periods and high energy physics, including cluster algebras and renormalisation theory; multiple Eisenstein series and q-analogues of multiple zeta values (also in connection with renormalisation); double shuffle and duality relations; alternative presentations of multiple zeta values using Ecalle's theory of moulds and arborification; a distribution formula for generalised complex and l-adic polylogarithms; Galois action on knots. Given its scope, the book offers a valuable resource for researchers and graduate students interested in topics related to both quantum field theory, in particular, scattering amplitudes, and number theory.
Publisher: Springer Nature
ISBN: 3030370313
Category : Mathematics
Languages : en
Pages : 631
Book Description
This book is the outcome of research initiatives formed during the special ``Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory'' at the ICMAT (Instituto de Ciencias Matemáticas, Madrid) in 2014. The activity was aimed at understanding and deepening recent developments where Feynman and string amplitudes on the one hand, and periods and multiple zeta values on the other, have been at the heart of lively and fruitful interactions between theoretical physics and number theory over the past few decades. In this book, the reader will find research papers as well as survey articles, including open problems, on the interface between number theory, quantum field theory and string theory, written by leading experts in the respective fields. Topics include, among others, elliptic periods viewed from both a mathematical and a physical standpoint; further relations between periods and high energy physics, including cluster algebras and renormalisation theory; multiple Eisenstein series and q-analogues of multiple zeta values (also in connection with renormalisation); double shuffle and duality relations; alternative presentations of multiple zeta values using Ecalle's theory of moulds and arborification; a distribution formula for generalised complex and l-adic polylogarithms; Galois action on knots. Given its scope, the book offers a valuable resource for researchers and graduate students interested in topics related to both quantum field theory, in particular, scattering amplitudes, and number theory.
Quantization, Geometry and Noncommutative Structures in Mathematics and Physics
Author: Alexander Cardona
Publisher: Springer
ISBN: 3319654276
Category : Science
Languages : en
Pages : 347
Book Description
This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.
Publisher: Springer
ISBN: 3319654276
Category : Science
Languages : en
Pages : 347
Book Description
This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.
Chern-simons (Super)gravity
Author: Mokhtar Hassaine
Publisher: World Scientific
ISBN: 9814730955
Category : Science
Languages : en
Pages : 149
Book Description
'The authors provide an up-to-date, well-organised background and essential elements of supergravity notions as well as all relevant aspects of Chern-Simons forms in gravitation. The book is a self-contained, informative, and much-needed broad introduction into the latest quantum gravity concepts, with a main focus on Chern-Simons gravity and supersymmetry … The book represents a comprehensive and systematic pedagogical exposition on gravitational Chern-Simons (Super)gravity theories, their applications, together with a selection of related recent developments in the field.'Contemporary PhysicsThis book grew out of a set of lecture notes on gravitational Chern-Simons (CS) theories developed over the past decade for several schools and different audiences including graduate students and researchers.CS theories are gauge-invariant theories that can include gravity consistently. They are only defined in odd dimensions and represent a very special class of theories in the Lovelock family. Lovelock gravitation theories are the natural extensions of General Relativity for dimensions greater than four that yield second-order field equations for the metric. These theories also admit local supersymmetric extensions where supersymmetry is an off-shell symmetry of the action, as in a standard gauge theory.Apart from the arguments of mathematical elegance and beauty, the gravitational CS actions are exceptionally endowed with physical attributes that suggest the viability of a quantum interpretation. CS theories are gauge-invariant, scale-invariant and background independent; they have no dimensional coupling constants. All constants in the Lagrangian are fixed rational coefficients that cannot be adjusted without destroying gauge invariance. This exceptional status of CS systems makes them classically interesting to study, and quantum mechanically intriguing and promising.
Publisher: World Scientific
ISBN: 9814730955
Category : Science
Languages : en
Pages : 149
Book Description
'The authors provide an up-to-date, well-organised background and essential elements of supergravity notions as well as all relevant aspects of Chern-Simons forms in gravitation. The book is a self-contained, informative, and much-needed broad introduction into the latest quantum gravity concepts, with a main focus on Chern-Simons gravity and supersymmetry … The book represents a comprehensive and systematic pedagogical exposition on gravitational Chern-Simons (Super)gravity theories, their applications, together with a selection of related recent developments in the field.'Contemporary PhysicsThis book grew out of a set of lecture notes on gravitational Chern-Simons (CS) theories developed over the past decade for several schools and different audiences including graduate students and researchers.CS theories are gauge-invariant theories that can include gravity consistently. They are only defined in odd dimensions and represent a very special class of theories in the Lovelock family. Lovelock gravitation theories are the natural extensions of General Relativity for dimensions greater than four that yield second-order field equations for the metric. These theories also admit local supersymmetric extensions where supersymmetry is an off-shell symmetry of the action, as in a standard gauge theory.Apart from the arguments of mathematical elegance and beauty, the gravitational CS actions are exceptionally endowed with physical attributes that suggest the viability of a quantum interpretation. CS theories are gauge-invariant, scale-invariant and background independent; they have no dimensional coupling constants. All constants in the Lagrangian are fixed rational coefficients that cannot be adjusted without destroying gauge invariance. This exceptional status of CS systems makes them classically interesting to study, and quantum mechanically intriguing and promising.
Regularised Integrals, Sums and Traces
Author: Sylvie Paycha
Publisher: American Mathematical Soc.
ISBN: 0821853678
Category : Mathematics
Languages : en
Pages : 203
Book Description
``Regularization techniques'' is the common name for a variety of methods used to make sense of divergent series, divergent integrals, or traces of linear operators in infinite-dimensional spaces. Such methods are often indispensable in problems of number theory, geometry, quantum field theory, and other areas of mathematics and theoretical physics. However arbitrary and noncanonical they might seem at first glance, regularized sums, integrals, and traces often contain canonical concepts, and the main purpose of this book is to illustrate and explain this. This book provides a unified and self-contained mathematical treatment of various regularization techniques. The author shows how to derive regularized sums, integrals, and traces from certain canonical building blocks of the original divergent object. In the process of putting together these ``building blocks'', one encounters many problems and ambiguities caused by various so-called anomalies, which are investigated and explained in detail. Nevertheless, it turns out that the corresponding canonical sums, integrals, sums, and traces are well behaved, thus making the regularization procedure possible and manageable. This new unified outlook on regularization techniques in various fields of mathematics and in quantum field theory can serve as an introduction for anyone from a beginning mathematician interested in the subject to an experienced physicist who wants to gain a unified outlook on techniques he/she uses on a daily basis.
Publisher: American Mathematical Soc.
ISBN: 0821853678
Category : Mathematics
Languages : en
Pages : 203
Book Description
``Regularization techniques'' is the common name for a variety of methods used to make sense of divergent series, divergent integrals, or traces of linear operators in infinite-dimensional spaces. Such methods are often indispensable in problems of number theory, geometry, quantum field theory, and other areas of mathematics and theoretical physics. However arbitrary and noncanonical they might seem at first glance, regularized sums, integrals, and traces often contain canonical concepts, and the main purpose of this book is to illustrate and explain this. This book provides a unified and self-contained mathematical treatment of various regularization techniques. The author shows how to derive regularized sums, integrals, and traces from certain canonical building blocks of the original divergent object. In the process of putting together these ``building blocks'', one encounters many problems and ambiguities caused by various so-called anomalies, which are investigated and explained in detail. Nevertheless, it turns out that the corresponding canonical sums, integrals, sums, and traces are well behaved, thus making the regularization procedure possible and manageable. This new unified outlook on regularization techniques in various fields of mathematics and in quantum field theory can serve as an introduction for anyone from a beginning mathematician interested in the subject to an experienced physicist who wants to gain a unified outlook on techniques he/she uses on a daily basis.