Author: Steven George Krantz
Publisher: American Mathematical Soc.
ISBN: 9780821889251
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book brings into focus the synergistic interaction between analysis and geometry by examining a variety of topics in function theory, real analysis, harmonic analysis, several complex variables, and group actions. Krantz's approach is motivated by examples, both classical and modern, which highlight the symbiotic relationship between analysis and geometry. Creating a synthesis among a host of different topics, this book is useful to researchers in geometry and analysis and may be of interest to physicists, astronomers, and engineers in certain areas. The book is based on lectures presented at an NSF-CBMS Regional Conference held in May 1992.
Geometric Analysis and Function Spaces
Author: Steven George Krantz
Publisher: American Mathematical Soc.
ISBN: 9780821889251
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book brings into focus the synergistic interaction between analysis and geometry by examining a variety of topics in function theory, real analysis, harmonic analysis, several complex variables, and group actions. Krantz's approach is motivated by examples, both classical and modern, which highlight the symbiotic relationship between analysis and geometry. Creating a synthesis among a host of different topics, this book is useful to researchers in geometry and analysis and may be of interest to physicists, astronomers, and engineers in certain areas. The book is based on lectures presented at an NSF-CBMS Regional Conference held in May 1992.
Publisher: American Mathematical Soc.
ISBN: 9780821889251
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book brings into focus the synergistic interaction between analysis and geometry by examining a variety of topics in function theory, real analysis, harmonic analysis, several complex variables, and group actions. Krantz's approach is motivated by examples, both classical and modern, which highlight the symbiotic relationship between analysis and geometry. Creating a synthesis among a host of different topics, this book is useful to researchers in geometry and analysis and may be of interest to physicists, astronomers, and engineers in certain areas. The book is based on lectures presented at an NSF-CBMS Regional Conference held in May 1992.
Geometric Analysis and Function Spaces
Author: Steven George Krantz
Publisher: American Mathematical Soc.
ISBN: 0821889257
Category : Mathematics
Languages : en
Pages : 216
Book Description
This book brings into focus the synergistic interaction between analysis and geometry by examining a variety of topics in function theory, real analysis, harmonic analysis, several complex variables, and group actions. Krantz's approach is motivated by examples, both classical and modern, which highlight the symbiotic relationship between analysis and geometry. Creating a synthesis among a host of different topics, this book is useful to researchers in geometry and analysis and may be of interest to physicists, astronomers, and engineers in certain areas. The book is based on lectures presented at an NSF-CBMS Regional Conference held in May 1992.
Publisher: American Mathematical Soc.
ISBN: 0821889257
Category : Mathematics
Languages : en
Pages : 216
Book Description
This book brings into focus the synergistic interaction between analysis and geometry by examining a variety of topics in function theory, real analysis, harmonic analysis, several complex variables, and group actions. Krantz's approach is motivated by examples, both classical and modern, which highlight the symbiotic relationship between analysis and geometry. Creating a synthesis among a host of different topics, this book is useful to researchers in geometry and analysis and may be of interest to physicists, astronomers, and engineers in certain areas. The book is based on lectures presented at an NSF-CBMS Regional Conference held in May 1992.
Geometric Functional Analysis and its Applications
Author: R. B. Holmes
Publisher: Springer
ISBN: 9781468493719
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book has evolved from my experience over the past decade in teaching and doing research in functional analysis and certain of its appli cations. These applications are to optimization theory in general and to best approximation theory in particular. The geometric nature of the subjects has greatly influenced the approach to functional analysis presented herein, especially its basis on the unifying concept of convexity. Most of the major theorems either concern or depend on properties of convex sets; the others generally pertain to conjugate spaces or compactness properties, both of which topics are important for the proper setting and resolution of optimization problems. In consequence, and in contrast to most other treatments of functional analysis, there is no discussion of spectral theory, and only the most basic and general properties of linear operators are established. Some of the theoretical highlights of the book are the Banach space theorems associated with the names of Dixmier, Krein, James, Smulian, Bishop-Phelps, Brondsted-Rockafellar, and Bessaga-Pelczynski. Prior to these (and others) we establish to two most important principles of geometric functional analysis: the extended Krein-Milman theorem and the Hahn Banach principle, the latter appearing in ten different but equivalent formula tions (some of which are optimality criteria for convex programs). In addition, a good deal of attention is paid to properties and characterizations of conjugate spaces, especially reflexive spaces.
Publisher: Springer
ISBN: 9781468493719
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book has evolved from my experience over the past decade in teaching and doing research in functional analysis and certain of its appli cations. These applications are to optimization theory in general and to best approximation theory in particular. The geometric nature of the subjects has greatly influenced the approach to functional analysis presented herein, especially its basis on the unifying concept of convexity. Most of the major theorems either concern or depend on properties of convex sets; the others generally pertain to conjugate spaces or compactness properties, both of which topics are important for the proper setting and resolution of optimization problems. In consequence, and in contrast to most other treatments of functional analysis, there is no discussion of spectral theory, and only the most basic and general properties of linear operators are established. Some of the theoretical highlights of the book are the Banach space theorems associated with the names of Dixmier, Krein, James, Smulian, Bishop-Phelps, Brondsted-Rockafellar, and Bessaga-Pelczynski. Prior to these (and others) we establish to two most important principles of geometric functional analysis: the extended Krein-Milman theorem and the Hahn Banach principle, the latter appearing in ten different but equivalent formula tions (some of which are optimality criteria for convex programs). In addition, a good deal of attention is paid to properties and characterizations of conjugate spaces, especially reflexive spaces.
Groups and Geometric Analysis
Author: Sigurdur Helgason
Publisher: American Mathematical Society
ISBN: 0821832115
Category : Mathematics
Languages : en
Pages : 667
Book Description
Group-theoretic methods have taken an increasingly prominent role in analysis. Some of this change has been due to the writings of Sigurdur Helgason. This book is an introduction to such methods on spaces with symmetry given by the action of a Lie group. The introductory chapter is a self-contained account of the analysis on surfaces of constant curvature. Later chapters cover general cases of the Radon transform, spherical functions, invariant operators, compact symmetric spaces and other topics. This book, together with its companion volume, Geometric Analysis on Symmetric Spaces (AMS Mathematical Surveys and Monographs series, vol. 39, 1994), has become the standard text for this approach to geometric analysis. Sigurdur Helgason was awarded the Steele Prize for outstanding mathematical exposition for Groups and Geometric Analysis and Differential Geometry, Lie Groups and Symmetric Spaces.
Publisher: American Mathematical Society
ISBN: 0821832115
Category : Mathematics
Languages : en
Pages : 667
Book Description
Group-theoretic methods have taken an increasingly prominent role in analysis. Some of this change has been due to the writings of Sigurdur Helgason. This book is an introduction to such methods on spaces with symmetry given by the action of a Lie group. The introductory chapter is a self-contained account of the analysis on surfaces of constant curvature. Later chapters cover general cases of the Radon transform, spherical functions, invariant operators, compact symmetric spaces and other topics. This book, together with its companion volume, Geometric Analysis on Symmetric Spaces (AMS Mathematical Surveys and Monographs series, vol. 39, 1994), has become the standard text for this approach to geometric analysis. Sigurdur Helgason was awarded the Steele Prize for outstanding mathematical exposition for Groups and Geometric Analysis and Differential Geometry, Lie Groups and Symmetric Spaces.
Methods of Geometric Analysis in Extension and Trace Problems
Author: Alexander Brudnyi
Publisher: Springer Science & Business Media
ISBN: 3034802099
Category : Mathematics
Languages : en
Pages : 577
Book Description
The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.
Publisher: Springer Science & Business Media
ISBN: 3034802099
Category : Mathematics
Languages : en
Pages : 577
Book Description
The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.
Analytic and Geometric Study of Stratified Spaces
Author: Markus J. Pflaum
Publisher: Springer
ISBN: 3540454365
Category : Mathematics
Languages : en
Pages : 233
Book Description
The book provides an introduction to stratification theory leading the reader up to modern research topics in the field. The first part presents the basics of stratification theory, in particular the Whitney conditions and Mather's control theory, and introduces the notion of a smooth structure. Moreover, it explains how one can use smooth structures to transfer differential geometric and analytic methods from the arena of manifolds to stratified spaces. In the second part the methods established in the first part are applied to particular classes of stratified spaces like for example orbit spaces. Then a new de Rham theory for stratified spaces is established and finally the Hochschild (co)homology theory of smooth functions on certain classes of stratified spaces is studied. The book should be accessible to readers acquainted with the basics of topology, analysis and differential geometry.
Publisher: Springer
ISBN: 3540454365
Category : Mathematics
Languages : en
Pages : 233
Book Description
The book provides an introduction to stratification theory leading the reader up to modern research topics in the field. The first part presents the basics of stratification theory, in particular the Whitney conditions and Mather's control theory, and introduces the notion of a smooth structure. Moreover, it explains how one can use smooth structures to transfer differential geometric and analytic methods from the arena of manifolds to stratified spaces. In the second part the methods established in the first part are applied to particular classes of stratified spaces like for example orbit spaces. Then a new de Rham theory for stratified spaces is established and finally the Hochschild (co)homology theory of smooth functions on certain classes of stratified spaces is studied. The book should be accessible to readers acquainted with the basics of topology, analysis and differential geometry.
Geometric Multivector Analysis
Author: Andreas Rosén
Publisher: Springer Nature
ISBN: 3030314111
Category : Mathematics
Languages : en
Pages : 471
Book Description
This book presents a step-by-step guide to the basic theory of multivectors and spinors, with a focus on conveying to the reader the geometric understanding of these abstract objects. Following in the footsteps of M. Riesz and L. Ahlfors, the book also explains how Clifford algebra offers the ideal tool for studying spacetime isometries and Möbius maps in arbitrary dimensions. The book carefully develops the basic calculus of multivector fields and differential forms, and highlights novelties in the treatment of, e.g., pullbacks and Stokes’s theorem as compared to standard literature. It touches on recent research areas in analysis and explains how the function spaces of multivector fields are split into complementary subspaces by the natural first-order differential operators, e.g., Hodge splittings and Hardy splittings. Much of the analysis is done on bounded domains in Euclidean space, with a focus on analysis at the boundary. The book also includes a derivation of new Dirac integral equations for solving Maxwell scattering problems, which hold promise for future numerical applications. The last section presents down-to-earth proofs of index theorems for Dirac operators on compact manifolds, one of the most celebrated achievements of 20th-century mathematics. The book is primarily intended for graduate and PhD students of mathematics. It is also recommended for more advanced undergraduate students, as well as researchers in mathematics interested in an introduction to geometric analysis.
Publisher: Springer Nature
ISBN: 3030314111
Category : Mathematics
Languages : en
Pages : 471
Book Description
This book presents a step-by-step guide to the basic theory of multivectors and spinors, with a focus on conveying to the reader the geometric understanding of these abstract objects. Following in the footsteps of M. Riesz and L. Ahlfors, the book also explains how Clifford algebra offers the ideal tool for studying spacetime isometries and Möbius maps in arbitrary dimensions. The book carefully develops the basic calculus of multivector fields and differential forms, and highlights novelties in the treatment of, e.g., pullbacks and Stokes’s theorem as compared to standard literature. It touches on recent research areas in analysis and explains how the function spaces of multivector fields are split into complementary subspaces by the natural first-order differential operators, e.g., Hodge splittings and Hardy splittings. Much of the analysis is done on bounded domains in Euclidean space, with a focus on analysis at the boundary. The book also includes a derivation of new Dirac integral equations for solving Maxwell scattering problems, which hold promise for future numerical applications. The last section presents down-to-earth proofs of index theorems for Dirac operators on compact manifolds, one of the most celebrated achievements of 20th-century mathematics. The book is primarily intended for graduate and PhD students of mathematics. It is also recommended for more advanced undergraduate students, as well as researchers in mathematics interested in an introduction to geometric analysis.
Geometric Aspects of Functional Analysis
Author: Bo'az Klartag
Publisher: Springer Nature
ISBN: 3030360202
Category : Mathematics
Languages : en
Pages : 346
Book Description
Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn–Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.
Publisher: Springer Nature
ISBN: 3030360202
Category : Mathematics
Languages : en
Pages : 346
Book Description
Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn–Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.
The Geometry of Domains in Space
Author: Steven G. Krantz
Publisher: Springer Science & Business Media
ISBN: 1461215749
Category : Mathematics
Languages : en
Pages : 311
Book Description
The analysis of Euclidean space is well-developed. The classical Lie groups that act naturally on Euclidean space-the rotations, dilations, and trans lations-have both shaped and guided this development. In particular, the Fourier transform and the theory of translation invariant operators (convolution transforms) have played a central role in this analysis. Much modern work in analysis takes place on a domain in space. In this context the tools, perforce, must be different. No longer can we expect there to be symmetries. Correspondingly, there is no longer any natural way to apply the Fourier transform. Pseudodifferential operators and Fourier integral operators can playa role in solving some of the problems, but other problems require new, more geometric, ideas. At a more basic level, the analysis of a smoothly bounded domain in space requires a great deal of preliminary spadework. Tubular neighbor hoods, the second fundamental form, the notion of "positive reach", and the implicit function theorem are just some of the tools that need to be invoked regularly to set up this analysis. The normal and tangent bundles become part of the language of classical analysis when that analysis is done on a domain. Many of the ideas in partial differential equations-such as Egorov's canonical transformation theorem-become rather natural when viewed in geometric language. Many of the questions that are natural to an analyst-such as extension theorems for various classes of functions-are most naturally formulated using ideas from geometry.
Publisher: Springer Science & Business Media
ISBN: 1461215749
Category : Mathematics
Languages : en
Pages : 311
Book Description
The analysis of Euclidean space is well-developed. The classical Lie groups that act naturally on Euclidean space-the rotations, dilations, and trans lations-have both shaped and guided this development. In particular, the Fourier transform and the theory of translation invariant operators (convolution transforms) have played a central role in this analysis. Much modern work in analysis takes place on a domain in space. In this context the tools, perforce, must be different. No longer can we expect there to be symmetries. Correspondingly, there is no longer any natural way to apply the Fourier transform. Pseudodifferential operators and Fourier integral operators can playa role in solving some of the problems, but other problems require new, more geometric, ideas. At a more basic level, the analysis of a smoothly bounded domain in space requires a great deal of preliminary spadework. Tubular neighbor hoods, the second fundamental form, the notion of "positive reach", and the implicit function theorem are just some of the tools that need to be invoked regularly to set up this analysis. The normal and tangent bundles become part of the language of classical analysis when that analysis is done on a domain. Many of the ideas in partial differential equations-such as Egorov's canonical transformation theorem-become rather natural when viewed in geometric language. Many of the questions that are natural to an analyst-such as extension theorems for various classes of functions-are most naturally formulated using ideas from geometry.
New Trends on Analysis and Geometry in Metric Spaces
Author: Fabrice Baudoin
Publisher: Springer Nature
ISBN: 3030841413
Category : Mathematics
Languages : en
Pages : 312
Book Description
This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.
Publisher: Springer Nature
ISBN: 3030841413
Category : Mathematics
Languages : en
Pages : 312
Book Description
This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.