Genomics and Disease Resistance in Wheat and Maize

Genomics and Disease Resistance in Wheat and Maize PDF Author: James A. Birchler
Publisher: Frontiers Media SA
ISBN: 2832508987
Category : Science
Languages : en
Pages : 191

Get Book Here

Book Description

Genomics and Disease Resistance in Wheat and Maize

Genomics and Disease Resistance in Wheat and Maize PDF Author: James A. Birchler
Publisher: Frontiers Media SA
ISBN: 2832508987
Category : Science
Languages : en
Pages : 191

Get Book Here

Book Description


Handbook of Maize: Its Biology

Handbook of Maize: Its Biology PDF Author: Jeff L. Bennetzen
Publisher: Springer Science & Business Media
ISBN: 0387794182
Category : Science
Languages : en
Pages : 593

Get Book Here

Book Description
Handbook of Maize: Its Biology centers on the past, present and future of maize as a model for plant science research and crop improvement. The book includes brief, focused chapters from the foremost maize experts and features a succinct collection of informative images representing the maize germplasm collection.

Genetics and Genomics of the Triticeae

Genetics and Genomics of the Triticeae PDF Author: Catherine Feuillet
Publisher: Springer Science & Business Media
ISBN: 0387774890
Category : Science
Languages : en
Pages : 774

Get Book Here

Book Description
Sequencing of the model plant genomes such as those of A. thaliana and rice has revolutionized our understanding of plant biology but it has yet to translate into the improvement of major crop species such as maize, wheat, or barley. Moreover, the comparative genomic studies in cereals that have been performed in the past decade have revealed the limits of conservation between rice and the other cereal genomes. This has necessitated the development of genomic resources and programs for maize, sorghum, wheat, and barley to serve as the foundation for future genome sequencing and the acceleration of genomic based improvement of these critically important crops. Cereals constitute over 50% of total crop production worldwide (http://www.fao.org/) and cereal seeds are one of the most important renewable resources for food, feed, and industrial raw materials. Crop species of the Triticeae tribe that comprise wheat, barley, and rye are essential components of human and domestic animal nutrition. With 17% of all crop area, wheat is the staple food for 40% of the world’s population, while barley ranks fifth in the world production. Their domestication in the Fertile Crescent 10,000 years ago ushered in the beginning of agriculture and signified an important breakthrough in the advancement of civilization. Rye is second after wheat among grains most commonly used in the production of bread and is also very important for mixed animal feeds. It can be cultivated in poor soils and climates that are generally not suitable for other cereals. Extensive genetics and cytogenetics studies performed in the Triticeae species over the last 50 years have led to the characterization of their chromosomal composition and origins and have supported intensive work to create new genetic resources. Cytogenetic studies in wheat have allowed the identification and characterization of the different homoeologous genomes and have demonstrated the utility of studying wheat genome evolution as a model for the analysis of polyploidization, a major force in the evolution of the eukaryotic genomes. Barley with its diploid genome shows high collinearity with the other Triticeae genomes and therefore serves as a good template for supporting genomic analyses in the wheat and rye genomes. The knowledge gained from genetic studies in the Triticeae has also been used to produce Triticale, the first human made hybrid crop that results from a cross between wheat and rye and combines the nutrition quality and productivity of wheat with the ruggedness of rye. Despite the economic importance of the Triticeae species and the need for accelerated crop improvement based on genomics studies, the size (1.7 Gb for the bread wheat genome, i.e., 5x the human genome and 40 times the rice genome), high repeat content (>80%), and complexity (polyploidy in wheat) of their genomes often have been considered too challenging for efficient molecular analysis and genetic improvement in these species. Consequently, Triticeae genomics has lagged behind the genomic advances of other cereal crops for many years. Recently, however, the situation has changed dramatically and robust genomic programs can be established in the Triticeae as a result of the convergence of several technology developments that have led to new, more efficient scientific capabilities and resources such as whole-genome and chromosome-specific BAC libraries, extensive EST collections, transformation systems, wild germplasm and mutant collections, as well as DNA chips. Currently, the Triticeae genomics "toolbox" is comprised of: - 9 publicly available BAC libraries from diploid (5), tetraploid (1) and hexaploid (3) wheat; 3 publicly available BAC libraries from barley and one BAC library from rye; - 3 wheat chromosome specific BAC libraries; - DNA chips including commercially available first generation chips from AFFYMETRIX containing 55’000 wheat and 22,000 barley genes; - A large number of wheat and barley genetic maps that are saturated by a significant number of markers; - The largest plant EST collection with 870’000 wheat ESTs, 440’000 barley ESTs and about 10’000 rye ESTs; - Established protocols for stable transformation by biolistic and agrobacterium as well as a transient expression system using VIGS in wheat and barley; and - Large collections of well characterized cultivated and wild genetic resources. International consortia, such as the International Triticeae Mapping Initiative (ITMI), have advanced synergies in the Triticeae genetics community in the development of additional mapping populations and markers that have led to a dramatic improvement in the resolution of the genetic maps and the amount of molecular markers in the three species resulting in the accelerated utilization of molecular markers in selection programs. Together, with the development of the genomic resources, the isolation of the first genes of agronomic interest by map-based cloning has been enabled and has proven the feasibility of forging the link between genotype and phenotype in the Triticeae species. Moreover, the first analyses of BAC sequences from wheat and barley have allowed preliminary characterizations of their genome organization and composition as well as the first inter- and intra-specific comparative genomic studies. These later have revealed important evolutionary mechanisms (e.g. unequal crossing over, illegitimate recombination) that have shaped the wheat and barley genomes during their evolution. These breakthroughs have demonstrated the feasibility of developing efficient genomic studies in the Triticeae and have led to the recent establishment of the International Wheat Genome Sequencing Consortium (IWGSC) (http//:www.wheatgenome.org) and the International Barley Sequencing Consortium (www.isbc.org) that aim to sequence, respectively, the hexaploid wheat and barley genomes to accelerate gene discovery and crop improvement in the next decade. Large projects aiming at the establishment of the physical maps as well as a better characterization of their composition and organization through large scale random sequencing projects have been initiated already. Concurrently, a number of projects have been launched to develop high throughput functional genomics in wheat and barley. Transcriptomics, proteomics, and metabolomics analyses of traits of agronomic importance, such as quality, disease resistance, drought, and salt tolerance, are underway in both species. Combined with the development of physical maps, efficient gene isolation will be enabled and improved sequencing technologies and reduced sequencing costs will permit ultimately genome sequencing and access to the entire wheat and barley gene regulatory elements repertoire. Because rye is closely related to wheat and barley in Triticeae evolution, the latest developments in wheat and barley genomics will be of great use for developing rye genomics and for providing tools for rye improvement. Finally, a new model for temperate grasses has emerged in the past year with the development of the genetics and genomics (including a 8x whole genome shotgun sequencing project) of Brachypodium, a member of the Poeae family that is more closely related to the Triticeae than rice and can provide valuable information for supporting Triticeae genomics in the near future. These recent breakthroughs have yet to be reviewed in a single source of literature and current handbooks on wheat, barley, or rye are dedicated mainly to progress in genetics. In "Genetics and Genomics of the Triticeae", we will aim to comprehensively review the recent progress in the development of structural and functional genomics tools in the Triticeae species and review the understanding of wheat, barley, and rye biology that has resulted from these new resources as well as to illuminate how this new found knowledge can be applied for the improvement of these essential species. The book will be the seventh volume in the ambitious series of books, Plant Genetics and Genomics (Richard A. Jorgensen, series editor) that will attempt to bring the field up-to-date on the genetics and genomics of important crop plants and genetic models. It is our hope that the publication will be a useful and timely tool for researchers and students alike working with the Triticeae.

Genetic Dissection of Maize Regeneration and Wheat Disease Resistance

Genetic Dissection of Maize Regeneration and Wheat Disease Resistance PDF Author: Guifang Lin
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The growing human population worldwide and the changing growth environments require significant crop improvement, which can be accelerated by plant genome engineering. Developing plant cultivars amenable to transformation and improving understanding of the genetic bases of important phenotypic traits can facilitate the use of advanced genome engineering technologies. This dissertation is focused on the genetic analysis of maize transformation and wheat resistance to the disease of leaf rust. The results will provide knowledge to improve crop transformation and wheat disease resistance. Plant transformation is a powerful tool for crop improvement and gene function validation. However, the transformation efficiency of maize is highly dependent on the tissue types and the genotypes. The maize inbred line A188 is amenable to transformation. A188 also exhibits many contrasting traits to the inbred line B73, which is recalcitrant to transformation. B73 was used to generate the first maize reference genome. The lack of genome sequences of A188 limits the use of A188 as a model for functional studies. Here, a chromosome-level genome assembly of A188 was constructed using long reads and optical physical maps. Genome comparison of A188 with B73 based on both whole genome alignments and sequencing read depths identified approximately 1.1 Gb syntenic sequences as well as extensive structural variation. Further, transcriptome and epigenome analyses with the A188 reference genome revealed enhanced gene expression of defense pathways and altered DNA methylation patterns of embryonic callus. The A188 genome assembly provides a foundational resource for analyses of genome variation and gene function in maize. In maize, morphologic types of calli induced from immature embryos are associated with the regeneration capability, which is a major factor determining the transformation efficiency. Here, two contrasting callus types, slow-growth type I calli and fast-growth type II calli, from the selected B73xA188 F2 population were sequenced using Genotyping-By-Sequencing (GBS) and RNA-Seq. With both approaches, the genomic loci associated with the callus type were mapped to chromosomes 2, 5, 6, 8, and 9. From F2 RNA-Seq, differentially expressed genes were identified from the comparison of type II and I calli. In addition, RNA-Seq analysis was performed using fast- and slow-growth calli identified for the A188 calli. Gene ontology (GO) enrichment analysis showed that the down-regulated genes in type II F2 calli and fast-growth A188 calli, as respectively compared to type I calli and slow-growth A188 calli, are overrepresented in the pathway related to cell wall organization, suggesting the role of cell wall formation in the callus development. Besides maize genetic and genomic studies, the dissertation includes the cloning of a leaf rust resistance gene in wheat. Wheat leaf rust disease is caused by a fungal pathogen, Puccinia triticina. The Lr42 gene from the wheat wild relative Aegilops tauschii confers resistance to all leaf rust races tested to date. Through bulked segregant RNA-Seq (BSR-Seq) mapping and further fine mapping, we identified an Lr42 candidate gene, which encodes a nucleotide-binding site leucine-rich repeat (NLR) protein. Transformation of the candidate gene to a leaf rust-susceptible wheat cultivar markedly enhanced the disease resistance, confirming the candidate NLR gene is the Lr42 gene. Cloning of Lr42 expands the repertoire of cloned rust resistance genes, as well as provides precise diagnostic gene markers for wheat improvement.

Wheat Blast

Wheat Blast PDF Author: Sudheer Kumar
Publisher: CRC Press
ISBN: 0429894074
Category : Science
Languages : en
Pages : 157

Get Book Here

Book Description
Wheat Blast provides systematic and practical information on wheat blast pathology, summarises research progress and discusses future perspectives based on current understanding of the existing issues. The book explores advance technologies that may help in deciding the path for future research and development for better strategies and techniques to manage the wheat blast disease. It equips readers with basic and applied understanding on the identification of disease, its distribution and chances of further spread in new areas, its potential to cause yield losses to wheat, the conditions that favour disease development, disease prediction modelling, resistance breeding methods and management strategies against wheat blast. Features: Provides comprehensive information on wheat blast pathogen and its management under a single umbrella Covers disease identification and diagnostics which will be helpful to check introduction in new areas Discusses methods and protocol to study the different aspects of the disease such as diagnostics, variability, resistance screening, epiphytotic creation etc. Gives deep insight on the past, present and future outlook of wheat blast research progress This book’s chapters are contributed by experts and pioneers in their respective fields and it provides comprehensive insight with updated findings on wheat blast research. It serves as a valuable reference for researchers, policy makers, students, teachers, farmers, seed growers, traders, and other stakeholders dealing with wheat.

Handbook of Maize

Handbook of Maize PDF Author: Jeff L. Bennetzen
Publisher: Springer Science & Business Media
ISBN: 0387778632
Category : Technology & Engineering
Languages : en
Pages : 785

Get Book Here

Book Description
Maize is one of the world’s highest value crops, with a multibillion dollar annual contribution to agriculture. The great adaptability and high yields available for maize as a food, feed and forage crop have led to its current production on over 140 million hectares worldwide, with acreage continuing to grow at the expense of other crops. In terms of tons of cereal grain produced worldwide, maize has been number one for many years. Moreover, maize is expanding its contribution to non-food uses, including as a major source of ethanol as a fuel additive or fuel alternative in the US. In addition, maize has been at the center of the transgenic plant controversy, serving as the first food crop with released transgenic varieties. By 2008, maize will have its genome sequence released, providing the sequence of the first average-size plant genome (the four plant genomes that are now sequenced come from unusually tiny genomes) and of the most complex genome sequenced from any organism. Among plant science researchers, maize has the second largest and most productive research community, trailing only the Arabidopsis community in scale and significance. At the applied research and commercial improvement levels, maize has no peers in agriculture, and consists of thousands of contributors worthwhile. A comprehensive book on the biology of maize has not been published. The "Handbook of Maize: the Genetics and Genomics" center on the past, present and future of maize as a model for plant science research and crop improvement. The books include brief, focused chapters from the foremost maize experts and feature a succinct collection of informative images representing the maize germplasm collection.

Disease Resistance in Wheat

Disease Resistance in Wheat PDF Author: Indu Sharma
Publisher: CABI
ISBN: 9781845939694
Category : Technology & Engineering
Languages : en
Pages : 334

Get Book Here

Book Description
Disease resistance is one of the major factors that can be improved to sustain yield potential in cultivated crops. This book looks at disease resistance in wheat, concentrating on all the economically important diseases - their economic impact and geographical spread, breeding for resistance, pathogen variability, resistance mechanisms and recent advances made on resistance genes. Newer strategies for identifying resistance genes and identify resistance mechanisms are discussed, including cloning, gene transfer and the use of genetically modified plants. It is suitable for researchers and stu.

Genome Engineering for Crop Improvement

Genome Engineering for Crop Improvement PDF Author: Bidyut Kumar Sarmah
Publisher: Springer Nature
ISBN: 3030633721
Category : Science
Languages : en
Pages : 277

Get Book Here

Book Description
This book serves the teachers, researchers and the students as a handy and concise reference as well as guidebook while designing and planning for use of the advanced technologies for crop improvement. The content of the book is designed to cover the latest genome engineering techniques for crop improvement. The conventional breeding has got its limitations such as non-availability of desired genes within the genepool. In many cases, breeding has been highly used and it has nearly reached its highest limit so far as the productivity and production of crops are concerned. However, with increasing need of food and decreasing resources, including water, land, labour, etc., to feed the growing population, the alternative available ways of increasing crop productivity need to be explored and exploited. Genome engineering has a wide scope that includes technologies such as genetic engineering and transgenesis, RNA technologies, CRISPR, cisgenics and subgenics for better productivity and more efficient biotic and abiotic stress management. Therefore, the book is planned to enlighten the readers with the advanced technologies with examples and case studies, whenever possible. Efforts will be made to emphasize on general efforts on various major food crops; however, it would also be made clear that such efforts could be taken as proofs of concepts and that this could be extrapolated keeping the demand in mind.

Genetics of Multiple Disease Resistance in Maize Inbred NY22613 and Science Communication of Quantitative Genetics

Genetics of Multiple Disease Resistance in Maize Inbred NY22613 and Science Communication of Quantitative Genetics PDF Author: Dhyaneswaran Palanichamy
Publisher:
ISBN:
Category :
Languages : en
Pages : 159

Get Book Here

Book Description
Given unpredictable pathogen pressures caused by changing climatic patterns, plant breeders aim to breed crop varieties with durable resistance to multiple plant pathogens. Understanding the genetic basis of multiple disease resistance will aid in this endeavor. Maize inbred NY22613, developed at Cornell University, have shown resistance to northern leaf blight (NLB), gray leaf spot (GLS), common rust, and Stewart's wilt (SW). A BC3S3 bi-parental mapping population (resistant inbred NY22613 and susceptible inbred Oh7B) was used to map the QTLs responsible for disease resistance. The analysis revealed that 16 quantitative trait loci (QTL) were associated with NLB resistance, 17 QTL with GLS resistance and 16 QTL with SW resistance. No QTL were colocalized for all three diseases. Three QTL were shared for NLB and GLS and one QTL was shared for GLS and SW. To select individuals with multiple disease resistance, we demonstrated a selection method that uses phenotypic data, QTL data and high density marker information in a cluster analysis, designated the high density marker phenotype (HEMP) QTL selection strategy. A differential expression study was conducted using susceptible inbred Oh7B and resistant inbred NY22613 in both field and greenhouse conditions, to identify genes that are differentially expressed when inoculated with Setosphaeria turcica (NLB). The Zm00001d024772 gene (unknown function in maize) was differentially expressed between the uninoculated and inoculated Oh7B in field and greenhouse conditions. Zm00001d027691, Zm00001d011152, Zm00001d008951, Zm00001d033623, Zm00001d021770 and Zm00001d034421 were differentially expressed in response to NLB inoculation in NY22613 in field and greenhouse conditions. None have a previously known function in maize, but Zm00001d033623 plays a major role in rice disease immunity. QTL analyses implicates liguleless1 to be associated with disease resistance to GLS and SW and the differential expression study implicates liguleless1 gene to be associated with disease resistance for NLB. This suggests that liguleless1 is an important candidate gene for multiple disease resistance. Direct-to-consumer genetic testing companies conduct low cost genotyping and genome sequencing for humans. This has led to the public having access to their genomic data more than ever before. Quantitative genetics is essential to understand genomic data. Science communication of quantitative genetics to the public is an under-explored strategy to address this issue. The story of quantitative genetics in humans is ugly due to its eugenic origins, however, the story of quantitative genetics in agriculture is inspiring. Using the achievements of quantitative genetics in agriculture, key concepts can be communicated to a diverse audience. Further, the quantitative genetics methods used in plant and animal breeding are being used in human genomic data. This necessitates plant and animal breeders/geneticists to participate in the communication of quantitative genetic methods to the public, so that the public can make informed decisions with their genomic data.

Genetic and Genomic Resources for Grain Cereals Improvement

Genetic and Genomic Resources for Grain Cereals Improvement PDF Author: Mohar Singh
Publisher: Academic Press
ISBN: 0128020377
Category : Business & Economics
Languages : en
Pages : 386

Get Book Here

Book Description
Genetic and Genomic Resources For Cereals Improvement is the first book to bring together the latest available genetic resources and genomics to facilitate the identification of specific germplasm, trait mapping, and allele mining that are needed to more effectively develop biotic and abiotic-stress-resistant grains. As grain cereals, including rice, wheat, maize, barley, sorghum, and millets constitute the bulk of global diets, both of vegetarian and non-vegetarian, there is a greater need for further genetic improvement, breeding, and plant genetic resources to secure the future food supply. This book is an invaluable resource for researchers, crop biologists, and students working with crop development and the changes in environmental climate that have had significant impact on crop production. It includes the latest information on tactics that ensure that environmentally robust genes and crops resilient to climate change are identified and preserved. Provides a single-volume resource on the global research work on grain cereals genetics and genomics Presents information for effectively managing and utilizing the genetic resources of this core food supply source Includes coverage of rice, wheat, maize, barley, sorghum, and pearl, finger and foxtail millets