Handbook of Maize

Handbook of Maize PDF Author: Jeff L. Bennetzen
Publisher: Springer Science & Business Media
ISBN: 0387778632
Category : Technology & Engineering
Languages : en
Pages : 785

Get Book Here

Book Description
Maize is one of the world’s highest value crops, with a multibillion dollar annual contribution to agriculture. The great adaptability and high yields available for maize as a food, feed and forage crop have led to its current production on over 140 million hectares worldwide, with acreage continuing to grow at the expense of other crops. In terms of tons of cereal grain produced worldwide, maize has been number one for many years. Moreover, maize is expanding its contribution to non-food uses, including as a major source of ethanol as a fuel additive or fuel alternative in the US. In addition, maize has been at the center of the transgenic plant controversy, serving as the first food crop with released transgenic varieties. By 2008, maize will have its genome sequence released, providing the sequence of the first average-size plant genome (the four plant genomes that are now sequenced come from unusually tiny genomes) and of the most complex genome sequenced from any organism. Among plant science researchers, maize has the second largest and most productive research community, trailing only the Arabidopsis community in scale and significance. At the applied research and commercial improvement levels, maize has no peers in agriculture, and consists of thousands of contributors worthwhile. A comprehensive book on the biology of maize has not been published. The "Handbook of Maize: the Genetics and Genomics" center on the past, present and future of maize as a model for plant science research and crop improvement. The books include brief, focused chapters from the foremost maize experts and feature a succinct collection of informative images representing the maize germplasm collection.

Handbook of Maize

Handbook of Maize PDF Author: Jeff L. Bennetzen
Publisher: Springer Science & Business Media
ISBN: 0387778632
Category : Technology & Engineering
Languages : en
Pages : 785

Get Book Here

Book Description
Maize is one of the world’s highest value crops, with a multibillion dollar annual contribution to agriculture. The great adaptability and high yields available for maize as a food, feed and forage crop have led to its current production on over 140 million hectares worldwide, with acreage continuing to grow at the expense of other crops. In terms of tons of cereal grain produced worldwide, maize has been number one for many years. Moreover, maize is expanding its contribution to non-food uses, including as a major source of ethanol as a fuel additive or fuel alternative in the US. In addition, maize has been at the center of the transgenic plant controversy, serving as the first food crop with released transgenic varieties. By 2008, maize will have its genome sequence released, providing the sequence of the first average-size plant genome (the four plant genomes that are now sequenced come from unusually tiny genomes) and of the most complex genome sequenced from any organism. Among plant science researchers, maize has the second largest and most productive research community, trailing only the Arabidopsis community in scale and significance. At the applied research and commercial improvement levels, maize has no peers in agriculture, and consists of thousands of contributors worthwhile. A comprehensive book on the biology of maize has not been published. The "Handbook of Maize: the Genetics and Genomics" center on the past, present and future of maize as a model for plant science research and crop improvement. The books include brief, focused chapters from the foremost maize experts and feature a succinct collection of informative images representing the maize germplasm collection.

Quantitative Genetics in Maize Breeding

Quantitative Genetics in Maize Breeding PDF Author: Arnel R. Hallauer
Publisher: Springer Science & Business Media
ISBN: 1441907661
Category : Science
Languages : en
Pages : 669

Get Book Here

Book Description
Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm

The Maize Handbook

The Maize Handbook PDF Author: Michael Freeling
Publisher: Springer Science & Business Media
ISBN: 1461226945
Category : Technology & Engineering
Languages : en
Pages : 776

Get Book Here

Book Description
The Maize Handbook represents the collective efforts of the maize research community to enumerate the key steps of standard procedures and to disseminate these protocols for the common good. Although the material in this volume is drawn from experience with maize, many of the procedures, protocols, and descriptions are applicable to other higher plants, particularly to other grasses. The power and resolution of experiments with maize depend on the wide range of specialized genetic techniques and marked stocks; these materials are available today as the culmination of nearly 100 years of genetic research. A major goal of this volume is to introduce this genetical legacy and to highlight current stock construction programs that will soon benefit our work, e. g. high-density RFLP maps, deletion stocks, etc. Both stock construction and maintenance are relatively straightforward in maize as a result of the ease of crossing and the longevity of stored seeds. Crossing is facilitated by the separate staminate (tassel) and pistillate (ear) flowers, a feature almost unique to maize. On the other hand, many of the genetic methodologies utilized with maize, including the precision of record keeping, can be adapted to other plants. Facile communication and a spirit of co-operation have characterized the maize genetics community since its earliest days. Starting in the 1930s, institutions such as annual Maize Genetics Cooperation Newsletter, the Maize Genetics Stock Center, and the annual maize genetics meeting provide continuity to the field.

The Indian Journal of Genetics & Plant Breeding

The Indian Journal of Genetics & Plant Breeding PDF Author:
Publisher:
ISBN:
Category : Genetics
Languages : en
Pages : 424

Get Book Here

Book Description


Developing Drought and Low N-tolerant Maize

Developing Drought and Low N-tolerant Maize PDF Author: G. O. Edmeades
Publisher: CIMMYT
ISBN: 9789686923933
Category : Corn
Languages : en
Pages : 580

Get Book Here

Book Description
Incidence and intensity of drought and low N stresss in the tropics; Case studies strategies for crop production under drought and low n stresses in the tropics; Stress physology and identification of secondary traits; Physiology of low nitrogen stress; Breeding for tolerance to drought and low n stresses; General breeding strategies for stress tolerance; Progress in breeding drought tolerance; Progress in breeding low nitrogen tolerance; Experimental design and software.

Cereal Research Communications

Cereal Research Communications PDF Author:
Publisher:
ISBN:
Category : Grain
Languages : en
Pages : 874

Get Book Here

Book Description


The Maize Genome

The Maize Genome PDF Author: Jeffrey Bennetzen
Publisher: Springer
ISBN: 3319974270
Category : Science
Languages : en
Pages : 390

Get Book Here

Book Description
This book discusses advances in our understanding of the structure and function of the maize genome since publication of the original B73 reference genome in 2009, and the progress in translating this knowledge into basic biology and trait improvement. Maize is an extremely important crop, providing a large proportion of the world’s human caloric intake and animal feed, and serving as a model species for basic and applied research. The exceptionally high level of genetic diversity within maize presents opportunities and challenges in all aspects of maize genetics, from sequencing and genotyping to linking genotypes to phenotypes. Topics covered in this timely book range from (i) genome sequencing and genotyping techniques, (ii) genome features such as centromeres and epigenetic regulation, (iii) tools and resources available for trait genomics, to (iv) applications of allele mining and genomics-assisted breeding. This book is a valuable resource for researchers and students interested in maize genetics and genomics.

Drought Adaptation in Cereals

Drought Adaptation in Cereals PDF Author: Jean-Marcel Ribaut
Publisher: CRC Press
ISBN: 9781560222781
Category : Technology & Engineering
Languages : en
Pages : 696

Get Book Here

Book Description
Learn how to best improve yield in cereal plants—even in dry conditions The impact of drought on crop production can be economically devastating. Drought Adaptation in Cereals provides a comprehensive review of the latest research on the tolerance of cereal crops to water-limited conditions. Renowned experts extensively describe basic concepts and cutting-edge research results to clearly reveal all facets of drought adaptation in cereals. More than simply a fine reference for plant biology and plant improvement under water-limited conditions, this book spotlights the most relevant biological approaches from plant phenotyping to functional genomics. The need to understand plant response to the lack of water is integral to forming strategies to best manage crops. Drought Adaptation in Cereals starts by offering an overview of the biological basis and defines the adaptive mechanisms found in plants under water-limited conditions. Different approaches are presented to provide understanding of plant genetics basics and plant breeding, including phenotyping, physiology, and biotechnology. The book details drought adaptation mechanisms at the cellular, organ, and entire plant levels, focusing on plant metabolism and gene functions. This resource is extensively referenced and contains tables, charts, and figures to clearly present data and enhance understanding. After a foreword by J. O'Toole and a prologue by A. Blum, Drought Adaptation in Cereals presents a full spectrum of informative topics from other internationally respected scientists. These include: drought’s economic impact (P. Heisey) genotype-by-environment interactions (M. Cooper) secondary traits for drought adaptation (P. Monneveux) leaf growth (F. Tardieu) carbon isotope discrimination (T. Condon) drought adaptation in barley (M. Sorrells), maize (M. Sawkins), rice (R. Lafitte), sorghum (A. Borrell) and wheat (M. Reynolds) carbohydrate metabolism (A. Tiessen) the role of abscisic acid (T. Setter) protection mechanisms and stress proteins (L. Mtwisha) genetic basis of ion homeostasis and water deficit (H. Bohnert) transcriptional factors (K. Yamaguchi-Shinozaki) resurrection plants (D. Bartels) Drought Adaptation in Cereals is a unique, vital reference for scientists, educators, and students in plant biology, agronomy, and natural resources management.

Principles and Procedures of Plant Breeding

Principles and Procedures of Plant Breeding PDF Author: G. S. Chahal
Publisher: CRC Press
ISBN: 9780849313219
Category : Crop improvement
Languages : en
Pages : 636

Get Book Here

Book Description
Covering traditional and emerging breeding procedures, this book explores the scientific bases and details of breeding plants. It puts a special emphasis on the further refinements possible in the light of the latest developments in molecular biology. Specific breeding methods in self and cross-pollinated crops, their genetic basis and scope of further refinements, concepts and techniques of tissue culture, molecular biology and production of transgenic plants, commonly used experimental designs in plant breeding, seed production, and implications of plant breeder's rights are other highlights.

Molecular Markers in Plant Genome Analysis

Molecular Markers in Plant Genome Analysis PDF Author: Andrew Kalinski
Publisher: DIANE Publishing
ISBN: 9780788119880
Category : Science
Languages : en
Pages : 132

Get Book Here

Book Description
A compilation of 82 annotated bibliographies on Molecular Markers in Plant Genome Analysis. Sponsored by CRIS/ICAR.