Genetic and Molecular Dissection of the Integration of Galactose and Glucose Signaling in Saccharomyces Cerevisiae Strains

Genetic and Molecular Dissection of the Integration of Galactose and Glucose Signaling in Saccharomyces Cerevisiae Strains PDF Author: Renan Antonio Escalante Chong
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Cells need to sense the environment in order to survive, in particular they need to detect nutrients which will provide different building blocks and energy for the cell. This task is complicated by the fact that there can be multiple sources for the same type of nutrient available for the cell. A classical example of how cells sense multiple signals is given by carbon catabolite repression in the budding yeast S. cerevisiae. In this model the preferred carbon source glucose represses the genes used to metabolize an alternative source such as galactose. This means that the preferred carbohydrate glucose is thought to inhibit the induction of galactose genes when above a threshold concentration. Instead, we show that galactose metabolic genes (GAL) induction depends on the ratio of galactose and glucose. Surprisingly, we find that a critical portion of information processing occurs upstream of the canonical components of the GAL pathway. We then explore how cells choose between different responses to the environment. Specifically, we set out to characterize the variability in the response to combinations of galactose and glucose between several natural yeast isolates. To elucidate the genetic basis of this phenotypic variation we use QTL mapping on these strains. Our study reveals that a signal transducer GAL3 plays a central role in establishing variation in GAL gene induction.Lastly, we focus on the control of transcription in the cell. Many promoters in the cell produce both a coding transcript and a divergent transcript. To identify mutants that affect transcriptional directionality we use a bidirectionalfluorescent protein reporter in the yeast nonessential gene deletion collection. We determine that chromatin assembly can regulate divergent transcription. Moreover, mutations in the chromatin assembly factor CAF-I can lead to genome wide derepression of nascent divergent transcription.

Insights Into the Molecular Genetics of Hexose Transporter Gene Regulation in Saccharomyces Cerevisiae

Insights Into the Molecular Genetics of Hexose Transporter Gene Regulation in Saccharomyces Cerevisiae PDF Author: Kevin L. Dietzel
Publisher:
ISBN:
Category :
Languages : en
Pages : 336

Get Book Here

Book Description


Dissecting the Glucose Sensing and Signaling Pathway in Saccharomyces Cerevisiae

Dissecting the Glucose Sensing and Signaling Pathway in Saccharomyces Cerevisiae PDF Author: Vidhya Ramakrishnan
Publisher:
ISBN:
Category :
Languages : en
Pages : 466

Get Book Here

Book Description


Investigating Signaling Pathway Integration in Saccharomyces Cerevisiae on an Alternative Carbon Source to Coordinate Growth, Metabolism, and Stress Defense

Investigating Signaling Pathway Integration in Saccharomyces Cerevisiae on an Alternative Carbon Source to Coordinate Growth, Metabolism, and Stress Defense PDF Author: Ellen Renee Wagner
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Due to its relative ease, microbial engineering is invaluable for applied research focused on product formation, particularly for biofuel production. The budding yeast Saccharomyces cerevisiae is an ideal organism for biofuel-based engineering due to its genetic tractability, well researched biology, and preference for fermentation. Even with these advantages, two large bottlenecks for sustainable biofuel production remain. First, when lignocellulosic biomass is broken down, it releases several sugars, the majority being glucose and xylose. While many microorganisms, including yeast, can readily ferment glucose, they lack the ability to ferment the pentose sugar xylose. Second, the process of breaking down lignocellulosic material introduces toxic chemicals into the resulting hydrolysate. These toxins inhibit microbial growth and metabolism, specifically limiting pentose utilization in engineered strains. Through collaborative efforts, we identified loss-of-function mutations in the stress-responsive MAP kinase HOG1 and negative regulator of the RAS/Protein Kinase A (PKA) pathway, IRA2, among other minimal genetic changes, enhances anaerobic xylose fermentation. However, these mutations likely reduce cells' ability to tolerate the toxins present in lignocellulosic hydrolysate, making the strain especially vulnerable to it. As these mutations impact broadly acting signaling networks, the physiological changes required for robust xylose fermentation are unclear. Previously, we generated a strain capable of rapid xylose fermentation with minimal growth by deleting the PKA regulatory subunit BCY1 in the presence of wildtype IRA2 and HOG1. Past work found these strains co-activate the alternative carbon source Snf1 pathway with the PKA pathway to enable xylose utilization. This present a unique model in which to study the integration of three highly conserved signaling pathways for the utilization of a non-native carbon source in the presence of environmental stressors. In chapter 2, we test the contributions of Hog1 and PKA signaling via IRA2 or BCY1 to metabolism, growth, and stress tolerance in mixed sugar media. In chapter 3, we use a multi-omics approach to develop models for how cells coordinate growth, metabolism, and other responses in budding yeast and how restructuring these processes enables anaerobic xylose utilization.

Cyclin Dependent Kinase 5 (Cdk5)

Cyclin Dependent Kinase 5 (Cdk5) PDF Author: Nancy Y. Ip
Publisher: Springer Science & Business Media
ISBN: 0387788875
Category : Medical
Languages : en
Pages : 326

Get Book Here

Book Description
Cyclin Dependent Kinase 5 provides a comprehensive and up-to-date collection of reviews on the discovery, signaling mechanisms and functions of Cdk5, as well as the potential implication of Cdk5 in the treatment of neurodegenerative diseases. Since the identification of this unique member of the Cdk family, Cdk5 has emerged as one of the most important signal transduction mediators in the development, maintenance and fine-tuning of neuronal functions and networking. Further studies have revealed that Cdk5 is also associated with the regulation of neuronal survival during both developmental stages and in neurodegenerative diseases. These observations indicate that precise control of Cdk5 is essential for the regulation of neuronal survival. The pivotal role Cdk5 appears to play in both the regulation of neuronal survival and synaptic functions thus raises the interesting possibility that Cdk5 inhibitors may serve as therapeutic treatment for a number of neurodegenerative diseases.

Non-Conventional Yeasts in Genetics, Biochemistry and Biotechnology

Non-Conventional Yeasts in Genetics, Biochemistry and Biotechnology PDF Author: Klaus Wolf
Publisher: Springer Science & Business Media
ISBN: 9783540442158
Category : Medical
Languages : en
Pages : 538

Get Book Here

Book Description
Most information on yeasts derives from experiments with the conventional yeasts Saccaromyces cerevisiae and Schizossaccharomyces pombe, the complete nuclear and mitochondrial genome of which has also been sequenced. For all other non-conventional yeasts, investigations are in progress and the rapid development of molecular techniques has allowed an insight also into a variety of non-conventional yeasts. In this bench manual, over 70 practical protocols using 15 different non-conventional yeast species and in addition several protocols of general use are described in detail. All of these experiments on the genetics, biochemistry and biotechnology of yeasts have been contributed by renowned laboratories and have been reproduced many times. The reliable protocols are thus ideally suited also for undergraduate and graduate practical courses.

Yeast

Yeast PDF Author: Horst Feldmann
Publisher: John Wiley & Sons
ISBN: 3527659196
Category : Science
Languages : en
Pages : 1

Get Book Here

Book Description
Finally, a stand-alone, all-inclusive textbook on yeast biology. Based on the feedback resulting from his highly successful monograph, Horst Feldmann has totally rewritten he contents to produce a comprehensive, student-friendly textbook on the topic. The scope has been widened, with almost double the content so as to include all aspects of yeast biology, from genetics via cell biology right up to biotechnology applications. The cell and molecular biology sections have been vastly expanded, while information on other yeast species has been added, with contributions from additional authors. Naturally, the illustrations are in full color throughout, and the book is backed by a complimentary website. The resulting textbook caters to the needs of an increasing number of students in biomedical research, cell and molecular biology, microbiology and biotechnology who end up using yeast as an important tool or model organism.

RAS Family GTPases

RAS Family GTPases PDF Author: Channing Der
Publisher: Springer
ISBN: 9781402043284
Category : Medical
Languages : en
Pages : 0

Get Book Here

Book Description
Since 1982, Ras proteins have been the subject of intense research investigation by the biomedical research community. The wide interest in Ras has been stimulated for three key reasons. This book features chapters contributed by leading investigators in the field that highlight the current state-of-the art in Ras biochemistry, structure and biology. This book is an excellent reference for students in the biomedical sciences and for investigators in the field.

Yeast Membrane Transport

Yeast Membrane Transport PDF Author: José Ramos
Publisher: Springer
ISBN: 3319253042
Category : Science
Languages : en
Pages : 381

Get Book Here

Book Description
This contributed volume reviews the recent progress in our understanding of membrane transport in yeast including both Saccharomyces cerevisiae and non-conventional yeasts. The articles provide a summary of the key transport processes and put these in a systems biology context of cellular regulation, signal reception and homeostasis. After a general introduction, readers will find review articles covering the mechanisms and regulation of transport for various substrates ranging from diverse nutrients to cations, water and protons. These articles are complemented by a chapter on extremophilic yeast, a chapter on the mathematical modelling of ion transport and two chapters on the role of transport in pathogenic yeasts and antifungal drug resistance. Each article provides both a general overview of the main transport characteristics of a specific substrate or group of substrates and the unique details that only an expert working in the field is able to transmit to the reader. Researchers and students of the topic will find this book to be a useful resource for membrane transport in yeast collecting information in one complete volume, which is otherwise scattered across many papers. This might also be interesting for scientists investigating other species in order to compare transport mechanisms with known functions in yeast with the cells on which they work.

Molecular Biology of the Cell

Molecular Biology of the Cell PDF Author:
Publisher:
ISBN:
Category : Cells
Languages : en
Pages : 594

Get Book Here

Book Description