Generative AI Application Integration Patterns

Generative AI Application Integration Patterns PDF Author: Juan Pablo Bustos
Publisher: Packt Publishing Ltd
ISBN: 1835887619
Category : Computers
Languages : en
Pages : 219

Get Book Here

Book Description
Unleash the transformative potential of GenAI with this comprehensive guide that serves as an indispensable roadmap for integrating large language models into real-world applications. Gain invaluable insights into identifying compelling use cases, leveraging state-of-the-art models effectively, deploying these models into your applications at scale, and navigating ethical considerations. Key Features Get familiar with the most important tools and concepts used in real scenarios to design GenAI apps Interact with GenAI models to tailor model behavior to minimize hallucinations Get acquainted with a variety of strategies and an easy to follow 4 step frameworks for integrating GenAI into applications Book Description Explore the transformative potential of GenAI in the application development lifecycle. Through concrete examples, you will go through the process of ideation and integration, understanding the tradeoffs and the decision points when integrating GenAI. With recent advances in models like Google Gemini, Anthropic Claude, DALL-E and GPT-4o, this timely resource will help you harness these technologies through proven design patterns. We then delve into the practical applications of GenAI, identifying common use cases and applying design patterns to address real-world challenges. From summarization and metadata extraction to intent classification and question answering, each chapter offers practical examples and blueprints for leveraging GenAI across diverse domains and tasks. You will learn how to fine-tune models for specific applications, progressing from basic prompting to sophisticated strategies such as retrieval augmented generation (RAG) and chain of thought. Additionally, we provide end-to-end guidance on operationalizing models, including data prep, training, deployment, and monitoring. We also focus on responsible and ethical development techniques for transparency, auditing, and governance as crucial design patterns. What you will learn Concepts of GenAI: pre-training, fine-tuning, prompt engineering, and RAG Framework for integrating AI: entry points, prompt pre-processing, inference, post-processing, and presentation Patterns for batch and real-time integration Code samples for metadata extraction, summarization, intent classification, question-answering with RAG, and more Ethical use: bias mitigation, data privacy, and monitoring Deployment and hosting options for GenAI models Who this book is for This book is not an introduction to AI/ML or Python. It offers practical guides for designing, building, and deploying GenAI applications in production. While all readers are welcome, those who benefit most include: Developer engineers with foundational tech knowledge Software architects seeking best practices and design patterns Professionals using ML for data science, research, etc., who want a deeper understanding of Generative AI Technical product managers with a software development background This concise focus ensures practical, actionable insights for experienced professionals

Enterprise Integration Patterns

Enterprise Integration Patterns PDF Author: Gregor Hohpe
Publisher: Addison-Wesley
ISBN: 0133065103
Category : Computers
Languages : en
Pages : 741

Get Book Here

Book Description
Enterprise Integration Patterns provides an invaluable catalog of sixty-five patterns, with real-world solutions that demonstrate the formidable of messaging and help you to design effective messaging solutions for your enterprise. The authors also include examples covering a variety of different integration technologies, such as JMS, MSMQ, TIBCO ActiveEnterprise, Microsoft BizTalk, SOAP, and XSL. A case study describing a bond trading system illustrates the patterns in practice, and the book offers a look at emerging standards, as well as insights into what the future of enterprise integration might hold. This book provides a consistent vocabulary and visual notation framework to describe large-scale integration solutions across many technologies. It also explores in detail the advantages and limitations of asynchronous messaging architectures. The authors present practical advice on designing code that connects an application to a messaging system, and provide extensive information to help you determine when to send a message, how to route it to the proper destination, and how to monitor the health of a messaging system. If you want to know how to manage, monitor, and maintain a messaging system once it is in use, get this book.

RAG-Driven Generative AI

RAG-Driven Generative AI PDF Author: Denis Rothman
Publisher: Packt Publishing Ltd
ISBN: 1836200900
Category : Computers
Languages : en
Pages : 335

Get Book Here

Book Description
Minimize AI hallucinations and build accurate, custom generative AI pipelines with RAG using embedded vector databases and integrated human feedback Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Implement RAG’s traceable outputs, linking each response to its source document to build reliable multimodal conversational agents Deliver accurate generative AI models in pipelines integrating RAG, real-time human feedback improvements, and knowledge graphs Balance cost and performance between dynamic retrieval datasets and fine-tuning static data Book DescriptionRAG-Driven Generative AI provides a roadmap for building effective LLM, computer vision, and generative AI systems that balance performance and costs. This book offers a detailed exploration of RAG and how to design, manage, and control multimodal AI pipelines. By connecting outputs to traceable source documents, RAG improves output accuracy and contextual relevance, offering a dynamic approach to managing large volumes of information. This AI book shows you how to build a RAG framework, providing practical knowledge on vector stores, chunking, indexing, and ranking. You’ll discover techniques to optimize your project’s performance and better understand your data, including using adaptive RAG and human feedback to refine retrieval accuracy, balancing RAG with fine-tuning, implementing dynamic RAG to enhance real-time decision-making, and visualizing complex data with knowledge graphs. You’ll be exposed to a hands-on blend of frameworks like LlamaIndex and Deep Lake, vector databases such as Pinecone and Chroma, and models from Hugging Face and OpenAI. By the end of this book, you will have acquired the skills to implement intelligent solutions, keeping you competitive in fields from production to customer service across any project.What you will learn Scale RAG pipelines to handle large datasets efficiently Employ techniques that minimize hallucinations and ensure accurate responses Implement indexing techniques to improve AI accuracy with traceable and transparent outputs Customize and scale RAG-driven generative AI systems across domains Find out how to use Deep Lake and Pinecone for efficient and fast data retrieval Control and build robust generative AI systems grounded in real-world data Combine text and image data for richer, more informative AI responses Who this book is for This book is ideal for data scientists, AI engineers, machine learning engineers, and MLOps engineers. If you are a solutions architect, software developer, product manager, or project manager looking to enhance the decision-making process of building RAG applications, then you’ll find this book useful.

Human Factors, Business Management and Society

Human Factors, Business Management and Society PDF Author: Vesa Salminen
Publisher: AHFE Conference
ISBN: 1964867118
Category : Technology & Engineering
Languages : en
Pages : 356

Get Book Here

Book Description
Proceedings of the 15th International Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences, Nice, France, 24-27 July 2024.

Enterprise GENERATIVE AI Well-Architected Framework & Patterns

Enterprise GENERATIVE AI Well-Architected Framework & Patterns PDF Author: Suvoraj Biswas
Publisher: Packt Publishing Ltd
ISBN: 1836202903
Category : Computers
Languages : en
Pages : 114

Get Book Here

Book Description
Elevate your AI projects with our course on Enterprise Generative AI using AWS's Well-Architected Framework, paving the way for innovation and efficiency Key Features Learn to secure AI environments Achieve excellence in AI architecture Implement AI with AWS solutions Book DescriptionThe course begins with an insightful introduction to the burgeoning field of Generative AI, laying down a robust framework for understanding its applications within the AWS ecosystem. The course focuses on meticulously detailing the five pillars of the AWS Well-Architected Framework—Operational Excellence, Security, Compliance, Reliability, and Cost Optimization. Each module is crafted to provide you with a comprehensive understanding of these essential areas, integrating Generative AI technologies. You'll learn how to navigate the complexities of securing AI systems, ensuring they comply with legal and regulatory standards, and designing them for unparalleled reliability. Practical sessions on cost optimization strategies for AI projects will empower you to deliver value without compromising on performance or scalability. Furthermore, the course delves into System Architecture Excellence, emphasizing the importance of robust design principles in creating effective Generative AI solutions. The course wraps up by offering a forward-looking perspective on the Common Architectural Pattern for FM/LLM Integration & Adoption within the AWS framework. You'll gain hands-on experience with AWS solutions specifically tailored for Generative AI applications, including Lambda, API Gateway, and DynamoDB, among others.What you will learn Apply Operational Excellence in AI Secure Generative AI implementations Navigate compliance in AI solutions Ensure reliability in AI systems Optimize costs for AI projects Integrate FM/LLM with AWS solutions Who this book is for This course is designed for IT professionals, solutions architects, and DevOps engineers looking to specialize in Generative AI. A foundational understanding of AWS and cloud computing is beneficial.

The Generative AI Practitioner’s Guide

The Generative AI Practitioner’s Guide PDF Author: Arup Das
Publisher: TinyTechMedia LLC
ISBN:
Category : Computers
Languages : en
Pages : 103

Get Book Here

Book Description
Generative AI is revolutionizing the way organizations leverage technology to gain a competitive edge. However, as more companies experiment with and adopt AI systems, it becomes challenging for data and analytics professionals, AI practitioners, executives, technologists, and business leaders to look beyond the buzz and focus on the essential questions: Where should we begin? How do we initiate the process? What potential pitfalls should we be aware of? This TinyTechGuide offers valuable insights and practical recommendations on constructing a business case, calculating ROI, exploring real-life applications, and considering ethical implications. Crucially, it introduces five LLM patterns—author, retriever, extractor, agent, and experimental—to effectively implement GenAI systems within an organization. The Generative AI Practitioner’s Guide: How to Apply LLM Patterns for Enterprise Applications bridges critical knowledge gaps for business leaders and practitioners, equipping them with a comprehensive toolkit to define a business case and successfully deploy GenAI. In today’s rapidly evolving world, staying ahead of the competition requires a deep understanding of these five implementation patterns and the potential benefits and risks associated with GenAI. Designed for business leaders, tech experts, and IT teams, this book provides real-life examples and actionable insights into GenAI’s transformative impact on various industries. Empower your organization with a competitive edge in today’s marketplace using The Generative AI Practitioner’s Guide: How to Apply LLM Patterns for Enterprise Applications. Remember, it’s not the tech that’s tiny, just the book!™

Serverless Development on AWS

Serverless Development on AWS PDF Author: Sheen Brisals
Publisher: "O'Reilly Media, Inc."
ISBN: 109814189X
Category : Computers
Languages : en
Pages : 527

Get Book Here

Book Description
The adoption of serverless is on the rise, but until now, little guidance has been available for development teams that want to apply this technology on AWS. This definitive guide is packed with architectural, security, and data best practices and patterns for architects and engineers who want to build reliable enterprise-scale serverless solutions. Sheen Brisals, an AWS Serverless Hero, and Luke Hedger, an AWS Community Builder, outline the serverless adoption requirements for an enterprise, examine the development tools your team needs, and explain in depth the nuances of testing event-driven and distributed serverless services. You'll gain practical guidance for keeping up with change and learn how to build serverless solutions with sustainability in mind. Examine the serverless technology ecosystem and AWS services needed to develop serverless applications Learn the approach and preparation required for a successful serverless adoption in an enterprise Learn serverless architectures and implementation patterns Design, develop, and test distributed serverless microservices on AWS cloud Apply security best practices while building serverless solutions Identify and adapt the implementation patterns for your particular use case Incorporate the necessary measures for observable serverless applications Implement sustainable serverless applications in the cloud

Business Process Management

Business Process Management PDF Author: Andrea Marrella
Publisher: Springer Nature
ISBN: 3031703960
Category :
Languages : en
Pages : 575

Get Book Here

Book Description


AI Healthcare Applications and Security, Ethical, and Legal Considerations

AI Healthcare Applications and Security, Ethical, and Legal Considerations PDF Author: Singla, Babita
Publisher: IGI Global
ISBN:
Category : Medical
Languages : en
Pages : 351

Get Book Here

Book Description
Artificial Intelligence (AI) technology has led to the creation of many opportunities in the field of healthcare. Like other industries, stakeholders in the healthcare sector stand to benefit tremendously from its adoption. The multifaceted benefits associated with AI are something that makes the adoption of technology constructive for the sector. That said, it is equally important to take care of the ethical, security, and safety challenges related to AI applications. AI Healthcare Applications and Security, Ethical, and Legal Considerations discusses in detail the various facets of AI integration in the healthcare sector. This book offers comprehensive information on how to integrate AI into the healthcare sector safely and ethically. Covering topics such as cybersecurity, machine learning models, and public policy, this book is an excellent resource for healthcare professionals and administrators, researchers, ethicists, legal scholars, healthcare policy makers and regulators, medical informatics and IT professionals, educators, bioethics professionals, academicians, and more.

Generative AI in Action

Generative AI in Action PDF Author: Amit Bahree
Publisher: Simon and Schuster
ISBN: 1638355762
Category : Computers
Languages : en
Pages : 462

Get Book Here

Book Description
Generative AI can transform your business by streamlining the process of creating text, images, and code. This book will show you how to get in on the action! Generative AI in Action is the comprehensive and concrete guide to generative AI you’ve been searching for. It introduces both AI’s fundamental principles and its practical applications in an enterprise context—from generating text and images for product catalogs and marketing campaigns, to technical reporting, and even writing software. Inside, author Amit Bahree shares his experience leading Generative AI projects at Microsoft for nearly a decade, starting well before the current GPT revolution. Inside Generative AI in Action you will find: • A practical overview of of generative AI applications • Architectural patterns, integration guidance, and best practices for generative AI • The latest techniques like RAG, prompt engineering, and multi-modality • The challenges and risks of generative AI like hallucinations and jailbreaks • How to integrate generative AI into your business and IT strategy Generative AI in Action is full of real-world use cases for generative AI, showing you where and how to start integrating this powerful technology into your products and workflows. You’ll benefit from tried-and-tested implementation advice, as well as application architectures to deploy GenAI in production at enterprise scale. About the technology In controlled environments, deep learning systems routinely surpass humans in reading comprehension, image recognition, and language understanding. Large Language Models (LLMs) can deliver similar results in text and image generation and predictive reasoning. Outside the lab, though, generative AI can both impress and fail spectacularly. So how do you get the results you want? Keep reading! About the book Generative AI in Action presents concrete examples, insights, and techniques for using LLMs and other modern AI technologies successfully and safely. In it, you’ll find practical approaches for incorporating AI into marketing, software development, business report generation, data storytelling, and other typically-human tasks. You’ll explore the emerging patterns for GenAI apps, master best practices for prompt engineering, and learn how to address hallucination, high operating costs, the rapid pace of change and other common problems. What's inside • Best practices for deploying Generative AI apps • Production-quality RAG • Adapting GenAI models to your specific domain About the reader For enterprise architects, developers, and data scientists interested in upgrading their architectures with generative AI. About the author Amit Bahree is Principal Group Product Manager for the Azure AI engineering team at Microsoft. The technical editor on this book was Wee Hyong Tok. Table of Contents Part 1 1 Introduction to generative AI 2 Introduction to large language models 3 Working through an API: Generating text 4 From pixels to pictures: Generating images 5 What else can AI generate? Part 2 6 Guide to prompt engineering 7 Retrieval-augmented generation: The secret weapon 8 Chatting with your data 9 Tailoring models with model adaptation and fine-tuning Part 3 10 Application architecture for generative AI apps 11 Scaling up: Best practices for production deployment 12 Evaluations and benchmarks 13 Guide to ethical GenAI: Principles, practices, and pitfalls A The book’s GitHub repository B Responsible AI tools