General-Purpose Heat Source Development

General-Purpose Heat Source Development PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
General-Purpose Heat Source radioisotope thermoelectric generators (GPHS-RTGs) will provide electric power for the NASA Galileo and European Space Agency Ulysses missions. Each GPHS-RTG comprises two major components: GPHS modules, which provide thermal energy, and a thermoelectric converter, which converts the thermal energy into electric power. Each of the 18 GPHS modules in a GPHS-RTG contains four 238PuO2-fueled capsules. LANL conducted a series of safety verification tests on the GPHS-RTG before the scheduled May 1986 launch of the Galileo spacecraft to assess the ability of the GPHS modules to contain the plutonia in potential accident environments. As a result of the Challenger 51-L accident in January 1986, NASA postponed the launch of Galileo; the launch vehicle was reconfigured and the spacecraft trajectory was modified. These actions prompted NASA to reevaluate potential mission accidents, and an extended series safety test program was initiated. The program included a series of large fragment tests that simulated the collision of solid rocket booster (SRB) fragments, generated in an SRB motor case rupture or resulting from a range safety officer SRB destruct action, with the GPHS-RTG. The tests indicated that fueled clads, inside a converter, will not breach or release fuel after a square (142 cm on a side) SRB fragment impacts flat-on at velocities up to 212 m/s, and that only the leading fueled capsules breach and release fuel after the square SRB fragment impacts the modules, inside the converter, edge-on at 95 m/s. 8 refs., 32 figs., 7 tabs.

General-Purpose Heat Source Development

General-Purpose Heat Source Development PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
General-Purpose Heat Source radioisotope thermoelectric generators (GPHS-RTGs) will provide electric power for the NASA Galileo and European Space Agency Ulysses missions. Each GPHS-RTG comprises two major components: GPHS modules, which provide thermal energy, and a thermoelectric converter, which converts the thermal energy into electric power. Each of the 18 GPHS modules in a GPHS-RTG contains four 238PuO2-fueled capsules. LANL conducted a series of safety verification tests on the GPHS-RTG before the scheduled May 1986 launch of the Galileo spacecraft to assess the ability of the GPHS modules to contain the plutonia in potential accident environments. As a result of the Challenger 51-L accident in January 1986, NASA postponed the launch of Galileo; the launch vehicle was reconfigured and the spacecraft trajectory was modified. These actions prompted NASA to reevaluate potential mission accidents, and an extended series safety test program was initiated. The program included a series of large fragment tests that simulated the collision of solid rocket booster (SRB) fragments, generated in an SRB motor case rupture or resulting from a range safety officer SRB destruct action, with the GPHS-RTG. The tests indicated that fueled clads, inside a converter, will not breach or release fuel after a square (142 cm on a side) SRB fragment impacts flat-on at velocities up to 212 m/s, and that only the leading fueled capsules breach and release fuel after the square SRB fragment impacts the modules, inside the converter, edge-on at 95 m/s. 8 refs., 32 figs., 7 tabs.

General-Purpose Heat Source Development

General-Purpose Heat Source Development PDF Author: Theresa A. Cull
Publisher:
ISBN:
Category : Sapce vehicles
Languages : en
Pages : 42

Get Book Here

Book Description


General-purpose Heat Source

General-purpose Heat Source PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 31

Get Book Here

Book Description
The general-purpose heat source provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

General-Purpose Heat Source Development

General-Purpose Heat Source Development PDF Author: Theresa A. Cull
Publisher:
ISBN:
Category : Nuclear fuel claddings
Languages : en
Pages : 35

Get Book Here

Book Description
The General-Purpose Heat Source (GPHS) is a modular component of a radioisotope thermoelectric generator (RTG) that will provide electric power for space missions. The initial RTG applications will be for the NASA Galileo and the ESA Ulysses missions. Each of the 18 GPHS modules in an RTG contains four 238PuO2-fueled clads and generates 250 W/sub (t)/. A series of Safety Verification Tests (SVTs) has been conducted to assess the ability of the GPHS fueled clads to contain the plutonia in accident environments. Because a launch pad or postlaunch explosion of the Space Transportation System Vehicle (space shuttle) is one conceivable accident, the SVT plan included a series of tests to simulate the fragment environment that the RTG and GPHS modules would experience in such an event. These tests deal specifically with the flat-on collision of flyer-plate-type fragments with bare, simulant-fueled (depleted UO2) clads. Results of these tests suggest that the fueled clad is only minimally breached by collision with 3.53-mm-thick flyer-plate-type fragments of space shuttle alloy at velocities up to 1170 m/s. However, collision of a 38.1-mm-thick plate with a bare GPHS clad, at a velocity of 270 m/s, results in a total release of fuel.

General-Purpose Heat Source Development

General-Purpose Heat Source Development PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The General-Purpose Heat Source (GPHS) is a modular component of a radioisotope thermoelectric generator (RTG) that will provide electric power for space missions. The initial RTG applications will be for the NASA Galileo and the ESA Ulysses missions. Each of the 18 GPHS modules in an RTG contains four 238PuO2-fueled clads and generates 250 W/sub (t)/. A series of Safety Verification Tests (SVTs) has been conducted to assess the ability of the GPHS fueled clads to contain the plutonia in accident environments. Because a launch pad or postlaunch explosion of the Space Transportation System Vehicle (space shuttle) is one conceivable accident, the SVT plan included a series of tests to simulate the fragment environment that the RTG and GPHS modules would experience in such an event. These tests deal specifically with the flat-on collision of flyer-plate-type fragments with bare, simulant-fueled (depleted UO2) clads. Results of these tests suggest that the fueled clad is only minimally breached by collision with 3.53-mm-thick flyer-plate-type fragments of space shuttle alloy at velocities up to 1170 m/s. However, collision of a 38.1-mm-thick plate with a bare GPHS clad, at a velocity of 270 m/s, results in a total release of fuel.

General-purpose Heat Source

General-purpose Heat Source PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 38

Get Book Here

Book Description
The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

General-purpose Heat Source Development

General-purpose Heat Source Development PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The radioisotope thermoelectric generator (RTG) that will provide power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. Each module contains four 238PuO2-fueled clads and generates 250 W(t). Because the possibility of launch-pad or postlaunch explosion exists and because any explosion would generate a field of high-energy fragments, the fueled clads within each GPHS module must be able to survive fragment impact. In this test series we investigated the response of bare, simulant-fueled (UO2) clads to the impact of high-energy titanium alloy fragments. We determined that 425m/s is the threshold impact velocity of a 3.25-g titanium bullet that will cause direct mechanical failure of a bare fueled clad. 40 figs.

General-purpose Heat Source: Research and Development Program. Radioisotope Thermoelectric Generator Impact Tests: RTG-1 and RTG-2

General-purpose Heat Source: Research and Development Program. Radioisotope Thermoelectric Generator Impact Tests: RTG-1 and RTG-2 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

General-purpose Heat Source Project, Space Nuclear Safety Program, and Radioisotopic Terrestrial Safety Program

General-purpose Heat Source Project, Space Nuclear Safety Program, and Radioisotopic Terrestrial Safety Program PDF Author: Los Alamos Scientific Laboratory
Publisher:
ISBN:
Category : Nuclear industry
Languages : en
Pages : 82

Get Book Here

Book Description


General-Purpose Heat Source Development

General-Purpose Heat Source Development PDF Author: Fred W. Schonfeld
Publisher:
ISBN:
Category : Space vehicles
Languages : en
Pages : 67

Get Book Here

Book Description