Gas Flow in Fluidized Beds of Large Particles

Gas Flow in Fluidized Beds of Large Particles PDF Author: Goran N. Jovanovic
Publisher:
ISBN:
Category : Fluidization
Languages : en
Pages : 150

Get Book Here

Book Description
Gas mixing is studied in fluidized beds of large particles. The bed is 0. 483 m by 0. 127 m (19 in. by 5 in.) in cross section and has transparent plexiglass panels on the front and back. A tube matrix made of twenty-seven 50.8 mm (2 in.) diameter plexiglass cylinders fixed in an equitriangular pitch (with the pitch to diameter ratio equal to 2) is used to study the effects of tubes. Experiments are done in a bed with and without tube array. Sand and dolomite particles with mean particle diameter of 1.3 mm (0. 051 in.) to 4.0 mm (0. 157 in.) are used. Gas velocities are varied from minimum fluidization velocity to an excess velocity of 2.5 m/s. Two large particle fluidization regimes are described. The experimental evidence is presented in support of the existence of slow bubble and exploding bubble regimes. A semi-theoretical equation establishing the boundary between these two modes of fluidization is derived. A slow bubble regime is encountered in the bed in which the interstitital velocity of the gas exceeds the rising velocity of bubbles. Here the gas uses the bubble as a convenient shortcut on its way through the bed. The exploding bubble regime is reached at higher superficial gas velocities when the bubble growth rate is of the same magnitude as the bubble rise velocity. Large pressure drop oscillations, gross gas bypassing, defluidization of some of the particles and rapid bubble growth are characteristics of the exploding bubble regime. A new criterion is suggested for distinguishing between the fast and the slow bubble regimes. The criterion is derived as a relationship between two non-dimensional groups. The expansion of the bed of large particles with and without tube array is also studied. Theoretical equations are proposed for correlating relative bed voidage versus relative excess gas velocity. They are based on the two-phase theory and all are developed as a special case of one general equation. The equation derived for the slow bubble regime fits the experimental data of this study better than other existing correlations. The equation developed for the fast bubble regime compares favorably with literature data for fine particles. A special case of the general equation can be developed for stationary bubbles and for the slugging regime. It is found that there is little difference in expansion of beds with and without a tube array at low excess gas velocities. However, for higher excess gas velocities expansion is considerably greater for beds with a tube array. Exploding bubbles in a bed without tubes are responsible for this difference. The dispersion of tracer gas injected continuously through a line source above the distributor plate is determined for time-averaged concentration measurements. The tracer concentration at points within the bed is successfully predicted using a single-phase model with interstitial gas velocity (based on average bed voidage) as a characteristic fluidization velocity. The model is insensitive to axial dispersion and depends only on radial dispersion coefficients. The radial dispersion coefficient does not depend on either horizontal or vertical position in the bed and is a strong function of excess gas velocity. Considerable difference is found in tracer dispersion in beds with and without tube array. A new model, called the meandering flow model, is proposed for gas flow through fluidized beds of large particles. The concept of meandering flow is developed on the basis of actual physical movement of gas. The series of peaks observed in tracer concentration data records are explained by a bulk lateral movement of gas induced by large bubbles. A simple mathematical technique is suggested for the analysis of tracer data. As a result of the application of the meandering flow model the turbulent and meandering dispersion coefficients are defined. Meandering of fluid through the bed does not contribute to gas mixing, and consequently the meandering dispersion coefficient has to be subtracted from the overall radial dispersion coefficient. Only the turbulent dispersion should be used in the evaluation of the extent of gas mixing in fluidized beds of large particles, which contributes to gas phase combustion.

Gas Flow in Fluidized Beds of Large Particles

Gas Flow in Fluidized Beds of Large Particles PDF Author: Goran N. Jovanovic
Publisher:
ISBN:
Category : Fluidization
Languages : en
Pages : 150

Get Book Here

Book Description
Gas mixing is studied in fluidized beds of large particles. The bed is 0. 483 m by 0. 127 m (19 in. by 5 in.) in cross section and has transparent plexiglass panels on the front and back. A tube matrix made of twenty-seven 50.8 mm (2 in.) diameter plexiglass cylinders fixed in an equitriangular pitch (with the pitch to diameter ratio equal to 2) is used to study the effects of tubes. Experiments are done in a bed with and without tube array. Sand and dolomite particles with mean particle diameter of 1.3 mm (0. 051 in.) to 4.0 mm (0. 157 in.) are used. Gas velocities are varied from minimum fluidization velocity to an excess velocity of 2.5 m/s. Two large particle fluidization regimes are described. The experimental evidence is presented in support of the existence of slow bubble and exploding bubble regimes. A semi-theoretical equation establishing the boundary between these two modes of fluidization is derived. A slow bubble regime is encountered in the bed in which the interstitital velocity of the gas exceeds the rising velocity of bubbles. Here the gas uses the bubble as a convenient shortcut on its way through the bed. The exploding bubble regime is reached at higher superficial gas velocities when the bubble growth rate is of the same magnitude as the bubble rise velocity. Large pressure drop oscillations, gross gas bypassing, defluidization of some of the particles and rapid bubble growth are characteristics of the exploding bubble regime. A new criterion is suggested for distinguishing between the fast and the slow bubble regimes. The criterion is derived as a relationship between two non-dimensional groups. The expansion of the bed of large particles with and without tube array is also studied. Theoretical equations are proposed for correlating relative bed voidage versus relative excess gas velocity. They are based on the two-phase theory and all are developed as a special case of one general equation. The equation derived for the slow bubble regime fits the experimental data of this study better than other existing correlations. The equation developed for the fast bubble regime compares favorably with literature data for fine particles. A special case of the general equation can be developed for stationary bubbles and for the slugging regime. It is found that there is little difference in expansion of beds with and without a tube array at low excess gas velocities. However, for higher excess gas velocities expansion is considerably greater for beds with a tube array. Exploding bubbles in a bed without tubes are responsible for this difference. The dispersion of tracer gas injected continuously through a line source above the distributor plate is determined for time-averaged concentration measurements. The tracer concentration at points within the bed is successfully predicted using a single-phase model with interstitial gas velocity (based on average bed voidage) as a characteristic fluidization velocity. The model is insensitive to axial dispersion and depends only on radial dispersion coefficients. The radial dispersion coefficient does not depend on either horizontal or vertical position in the bed and is a strong function of excess gas velocity. Considerable difference is found in tracer dispersion in beds with and without tube array. A new model, called the meandering flow model, is proposed for gas flow through fluidized beds of large particles. The concept of meandering flow is developed on the basis of actual physical movement of gas. The series of peaks observed in tracer concentration data records are explained by a bulk lateral movement of gas induced by large bubbles. A simple mathematical technique is suggested for the analysis of tracer data. As a result of the application of the meandering flow model the turbulent and meandering dispersion coefficients are defined. Meandering of fluid through the bed does not contribute to gas mixing, and consequently the meandering dispersion coefficient has to be subtracted from the overall radial dispersion coefficient. Only the turbulent dispersion should be used in the evaluation of the extent of gas mixing in fluidized beds of large particles, which contributes to gas phase combustion.

Essentials of Fluidization Technology

Essentials of Fluidization Technology PDF Author: John R. Grace
Publisher: John Wiley & Sons
ISBN: 3527340645
Category : Technology & Engineering
Languages : en
Pages : 626

Get Book Here

Book Description
A concise and clear treatment of the fundamentals of fluidization, with a view to its applications in the process and energy industries.

Fluidization VIII

Fluidization VIII PDF Author: Jean François Large
Publisher:
ISBN:
Category : Fluidization
Languages : en
Pages : 744

Get Book Here

Book Description


Fluidization

Fluidization PDF Author: John M. Matsen
Publisher: Springer Science & Business Media
ISBN: 1468410458
Category : Technology & Engineering
Languages : en
Pages : 612

Get Book Here

Book Description
Fluidized beds have gained prominence in many process in dustries (including chemicals, petroleum, metallurgy, food and pharmaceuticals) as a means of bringing particulate solids into contact with gases and/or liquids. Many fluidized bed operations are physical in nature (e.g. drying, coating, classification, granulation, and rapid heat transfer as in quenching or annealing). Other operations involve chemical reactions including the cata lytic cracking of hydrocarbons, the manufacture of acry10nitrite and phthalic anhydride, the roasting of metallurgical ores, and the regeneration of spent catalysts. In recent years fluidized beds have been of special interest because of their potential as the central component in new processes for utilizing coal as a source of energy, notably in coal combustion and gasification processes. The fluidized bed offers a number of advantages over most other methods of contacting, in particular high rates of heat transfer, temperature uniformity and solids mobility. Among the disadvantages are particle losses by entrainment, attrition of solids, limited reactor efficiency due to gas bypassing and gas and solids backmixing, and difficulties in design and scale-up due to the complexity of fluidized beds. The International Fluidization Conference held in Henniker, New Hampshire, U.S.A. from 3-8 August 1980 was the fifth inter national congress devoted to the entire field of fluidization.

Handbook of Fluidization and Fluid-Particle Systems

Handbook of Fluidization and Fluid-Particle Systems PDF Author: Wen-Ching Yang
Publisher: CRC Press
ISBN: 0824748360
Category : Science
Languages : en
Pages : 873

Get Book Here

Book Description
This reference details particle characterization, dynamics, manufacturing, handling, and processing for the employment of multiphase reactors, as well as procedures in reactor scale-up and design for applications in the chemical, mineral, petroleum, power, cement and pharmaceuticals industries. The authors discuss flow through fixed beds, elutriation and entrainment, gas distributor and plenum design in fluidized beds, effect of internal tubes and baffles, general approaches to reactor design, applications for gasifiers and combustors, dilute phase pneumatic conveying, and applications for chemical production and processing. This is a valuable guide for chemists and engineers to use in their day-to-day work.

Fluidized-Bed Reactors: Processes and Operating Conditions

Fluidized-Bed Reactors: Processes and Operating Conditions PDF Author: John G. Yates
Publisher: Springer
ISBN: 3319395939
Category : Science
Languages : en
Pages : 214

Get Book Here

Book Description
The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

Fundamentals of Gas Particle Flow

Fundamentals of Gas Particle Flow PDF Author: G Rudinger
Publisher: Elsevier
ISBN: 0444601821
Category : Science
Languages : en
Pages : 157

Get Book Here

Book Description
Fundamentals of Gas-Particle Flow is an edited, updated, and expanded version of a number of lectures presented on the "Gas-Solid Suspensions course organized by the von Karman Institute for Fluid Dynamics. Materials presented in this book are mostly analytical in nature, but some experimental techniques are included. The book focuses on relaxation processes, including the viscous drag of single particles, drag in gas-particles flow, gas-particle heat transfer, equilibrium, and frozen flow. It also discusses the dynamics of single particles, such as particles in an arbitrary flow, in a rotating gas, in a Prandtl-Meyer expansion, and in an oscillating flow. The remaining chapters of the book deal with the thermodynamics of gas-particle mixtures, steady flow through ducts, pressure waves, gas-particle jets, boundary layer, and momentum transfer. The experimental techniques included in this book present the powder feeders, the instrumentation on particle flow rate, velocity, concentration and temperature, and the measurement of the particle drag coefficient in a shock tube.

Fluidization Engineering

Fluidization Engineering PDF Author: D. Kunii
Publisher: Elsevier
ISBN: 008050664X
Category : Science
Languages : en
Pages : 520

Get Book Here

Book Description
Fluidization Engineering, Second Edition, expands on its original scope to encompass these new areas and introduces reactor models specifically for these contacting regimes. Completely revised and updated, it is essentially a new book. Its aim is to distill from the thousands of studies those particular developments that are pertinent for the engineer concerned with predictive methods, for the designer, and for the user and potential user of fluidized beds. - Covers the recent advances in the field of fluidization. - Presents the studies of developments necessary to the engineers, designers, and users of fluidized beds.

The Effect of Particle Size on the Properties of Gas-fluidized Beds

The Effect of Particle Size on the Properties of Gas-fluidized Beds PDF Author: K. S. Sutherland
Publisher:
ISBN:
Category : Bulk solids flow
Languages : en
Pages : 58

Get Book Here

Book Description
The development of a continuous method for determining changes in particle size and particle size distribution in fluid-bed systems has been studied experimentally. Differential pressure measurements were employed to study the effects of solid particle size on the behavior of gas-fluidized beds. The relevant bed properties are briefly described and a review given of previous work on the study of fluidized-bed quality. It is shown that, within certain limitations, measurements of bed quality can be used to indicate changes in particle size. Gas-bubble velocities, while increasing in proportion to the square root of bubble diameter, are also shown to be dependent on particle size, increasing as the particle size decreases.

Principles of Gas-Solid Flows

Principles of Gas-Solid Flows PDF Author: Liang-Shih Fan
Publisher: Cambridge University Press
ISBN: 0521581486
Category : Science
Languages : en
Pages : 579

Get Book Here

Book Description
Discusses fundamental principles of gas-solid flows and their applications, and includes numerous examples and homework problems.