Galois Groups and Fundamental Groups

Galois Groups and Fundamental Groups PDF Author: Tamás Szamuely
Publisher: Cambridge University Press
ISBN: 0521888506
Category : Mathematics
Languages : en
Pages : 281

Get Book Here

Book Description
Assuming little technical background, the author presents the strong analogies between these two concepts starting at an elementary level.

Galois Groups and Fundamental Groups

Galois Groups and Fundamental Groups PDF Author: Tamás Szamuely
Publisher: Cambridge University Press
ISBN: 0521888506
Category : Mathematics
Languages : en
Pages : 281

Get Book Here

Book Description
Assuming little technical background, the author presents the strong analogies between these two concepts starting at an elementary level.

Galois Groups and Fundamental Groups

Galois Groups and Fundamental Groups PDF Author: Leila Schneps
Publisher: Cambridge University Press
ISBN: 9780521808316
Category : Mathematics
Languages : en
Pages : 486

Get Book Here

Book Description
Table of contents

Groups as Galois Groups

Groups as Galois Groups PDF Author: Helmut Völklein
Publisher: Cambridge University Press
ISBN: 9780521562805
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
Develops the mathematical background and recent results on the Inverse Galois Problem.

Galois Groups and Fundamental Groups on Riemann Surfaces

Galois Groups and Fundamental Groups on Riemann Surfaces PDF Author: Matthias Himmelmann
Publisher: GRIN Verlag
ISBN: 3668818967
Category : Mathematics
Languages : en
Pages : 46

Get Book Here

Book Description
Bachelor Thesis from the year 2018 in the subject Mathematics - Algebra, grade: 1,0, Free University of Berlin (Mathematik), language: English, abstract: This thesis deals with the correlation of the fundamental group and the Galois group, using their corresponding entities of covering spaces and field extensions. First it is viewed in the general setting of categories, using the language of Galois categories. It is shown that the categories of the finite étale algebras and the category of covering spaces are correlated, which gives the fact that the profinite completion of the fundamental group and the absolute Galois group are similar. More specifically, on Riemann surfaces it is shown that there exists an anti-equivalence of categories between the finite field extensions of the meromorphic functions of a compact, connected Riemann Surface X and the category of branched coverings of X. A more explicit theorem, that provides an isomorphism between a specific Galois Group and the profinite Completion of the Fundamental Group of a pointed X, gives more insight on the behaviour of these two groups.

Galois Groups over ?

Galois Groups over ? PDF Author: Y. Ihara
Publisher: Springer Science & Business Media
ISBN: 1461396492
Category : Mathematics
Languages : en
Pages : 454

Get Book Here

Book Description
This volume is the offspring of a week-long workshop on "Galois groups over Q and related topics," which was held at the Mathematical Sciences Research Institute during the week March 23-27, 1987. The organizing committee consisted of Kenneth Ribet (chairman), Yasutaka Ihara, and Jean-Pierre Serre. The conference focused on three principal themes: 1. Extensions of Q with finite simple Galois groups. 2. Galois actions on fundamental groups, nilpotent extensions of Q arising from Fermat curves, and the interplay between Gauss sums and cyclotomic units. 3. Representations of Gal(Q/Q) with values in GL(2)j deformations and connections with modular forms. Here is a summary of the conference program: • G. Anderson: "Gauss sums, circular units and the simplex" • G. Anderson and Y. Ihara: "Galois actions on 11"1 ( ••• ) and higher circular units" • D. Blasius: "Maass forms and Galois representations" • P. Deligne: "Galois action on 1I"1(P-{0, 1, oo}) and Hodge analogue" • W. Feit: "Some Galois groups over number fields" • Y. Ihara: "Arithmetic aspect of Galois actions on 1I"1(P - {O, 1, oo})" - survey talk • U. Jannsen: "Galois cohomology of i-adic representations" • B. Matzat: - "Rationality criteria for Galois extensions" - "How to construct polynomials with Galois group Mll over Q" • B. Mazur: "Deforming GL(2) Galois representations" • K. Ribet: "Lowering the level of modular representations of Gal( Q/ Q)" • J-P. Serre: - Introductory Lecture - "Degree 2 modular representations of Gal(Q/Q)" • J.

Non-abelian Fundamental Groups and Iwasawa Theory

Non-abelian Fundamental Groups and Iwasawa Theory PDF Author: John Coates
Publisher: Cambridge University Press
ISBN: 1139505653
Category : Mathematics
Languages : en
Pages : 321

Get Book Here

Book Description
This book describes the interaction between several key aspects of Galois theory based on Iwasawa theory, fundamental groups and automorphic forms. These ideas encompass a large portion of mainstream number theory and ramifications that are of interest to graduate students and researchers in number theory, algebraic geometry, topology and physics.

Topics in Galois Theory

Topics in Galois Theory PDF Author: Jean-Pierre Serre
Publisher: CRC Press
ISBN: 1439865256
Category : Mathematics
Languages : en
Pages : 136

Get Book Here

Book Description
This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi

Galois Theory for Beginners

Galois Theory for Beginners PDF Author: Jörg Bewersdorff
Publisher: American Mathematical Soc.
ISBN: 0821838172
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. This book follows the historical development of the theory, emphasizing concrete examples along the way. It is suitable for undergraduates and beginning graduate students.

Algebraic Groups and Differential Galois Theory

Algebraic Groups and Differential Galois Theory PDF Author: Teresa Crespo
Publisher: American Mathematical Soc.
ISBN: 082185318X
Category : Computers
Languages : en
Pages : 242

Get Book Here

Book Description
Differential Galois theory has seen intense research activity during the last decades in several directions: elaboration of more general theories, computational aspects, model theoretic approaches, applications to classical and quantum mechanics as well as to other mathematical areas such as number theory. This book intends to introduce the reader to this subject by presenting Picard-Vessiot theory, i.e. Galois theory of linear differential equations, in a self-contained way. The needed prerequisites from algebraic geometry and algebraic groups are contained in the first two parts of the book. The third part includes Picard-Vessiot extensions, the fundamental theorem of Picard-Vessiot theory, solvability by quadratures, Fuchsian equations, monodromy group and Kovacic's algorithm. Over one hundred exercises will help to assimilate the concepts and to introduce the reader to some topics beyond the scope of this book. This book is suitable for a graduate course in differential Galois theory. The last chapter contains several suggestions for further reading encouraging the reader to enter more deeply into different topics of differential Galois theory or related fields.

Galois Theories

Galois Theories PDF Author: Francis Borceux
Publisher: Cambridge University Press
ISBN: 9780521803090
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
Starting from the classical finite-dimensional Galois theory of fields, this book develops Galois theory in a much more general context, presenting work by Grothendieck in terms of separable algebras and then proceeding to the infinite-dimensional case, which requires considering topological Galois groups. In the core of the book, the authors first formalize the categorical context in which a general Galois theorem holds, and then give applications to Galois theory for commutative rings, central extensions of groups, the topological theory of covering maps and a Galois theorem for toposes. The book is designed to be accessible to a wide audience: the prerequisites are first courses in algebra and general topology, together with some familiarity with the categorical notions of limit and adjoint functors. The first chapters are accessible to advanced undergraduates, with later ones at a graduate level. For all algebraists and category theorists this book will be a rewarding read.