Author: Uwe Mühlich
Publisher: Springer
ISBN: 3319562649
Category : Science
Languages : en
Pages : 134
Book Description
This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.
Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds
Author: Uwe Mühlich
Publisher: Springer
ISBN: 3319562649
Category : Science
Languages : en
Pages : 134
Book Description
This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.
Publisher: Springer
ISBN: 3319562649
Category : Science
Languages : en
Pages : 134
Book Description
This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.
An Introduction to Manifolds
Author: Loring W. Tu
Publisher: Springer Science & Business Media
ISBN: 1441974008
Category : Mathematics
Languages : en
Pages : 426
Book Description
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
Publisher: Springer Science & Business Media
ISBN: 1441974008
Category : Mathematics
Languages : en
Pages : 426
Book Description
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
The Calculus for Engineers
Author: John Perry
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 398
Book Description
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 398
Book Description
Design of Electrical Transmission Lines
Author: Sriram Kalaga
Publisher: CRC Press
ISBN: 1317627911
Category : Technology & Engineering
Languages : en
Pages : 468
Book Description
This book covers structural and foundation systems used in high-voltage transmission lines, conductors, insulators, hardware and component assembly. In most developing countries, the term “transmission structures” usually means lattice steel towers. The term actually includes a vast range of structural systems and configurations of various materials such as wood, steel, concrete and composites. This book discusses those systems along with associated topics such as structure functions and configurations, load cases for design, analysis techniques, structure and foundation modeling, design deliverables and latest advances in the field. In the foundations section, theories related to direct embedment, drilled shaf ts, spread foundations and anchors are discussed in detail. Featuring worked out design problems for students, the book is aimed at students, practicing engineers, researchers and academics. It contains beneficial information for those involved in the design and maintenance of transmission line structures and foundations. For those in academia, it will be an adequate text-book / design guide for graduate-level courses on the topic. Engineers and managers at utilities and electrical corporations will find the book a useful reference at work.
Publisher: CRC Press
ISBN: 1317627911
Category : Technology & Engineering
Languages : en
Pages : 468
Book Description
This book covers structural and foundation systems used in high-voltage transmission lines, conductors, insulators, hardware and component assembly. In most developing countries, the term “transmission structures” usually means lattice steel towers. The term actually includes a vast range of structural systems and configurations of various materials such as wood, steel, concrete and composites. This book discusses those systems along with associated topics such as structure functions and configurations, load cases for design, analysis techniques, structure and foundation modeling, design deliverables and latest advances in the field. In the foundations section, theories related to direct embedment, drilled shaf ts, spread foundations and anchors are discussed in detail. Featuring worked out design problems for students, the book is aimed at students, practicing engineers, researchers and academics. It contains beneficial information for those involved in the design and maintenance of transmission line structures and foundations. For those in academia, it will be an adequate text-book / design guide for graduate-level courses on the topic. Engineers and managers at utilities and electrical corporations will find the book a useful reference at work.
Tensors and Manifolds
Author: Robert Wasserman
Publisher: Oxford University Press, USA
ISBN: 9780198510598
Category : Language Arts & Disciplines
Languages : en
Pages : 468
Book Description
This book sets forth the basic principles of tensors and manifolds and describes how the mathematics underlies elegant geometrical models of classical mechanics, relativity and elementary particle physics.
Publisher: Oxford University Press, USA
ISBN: 9780198510598
Category : Language Arts & Disciplines
Languages : en
Pages : 468
Book Description
This book sets forth the basic principles of tensors and manifolds and describes how the mathematics underlies elegant geometrical models of classical mechanics, relativity and elementary particle physics.
Information Geometry and Its Applications
Author: Shun-ichi Amari
Publisher: Springer
ISBN: 4431559787
Category : Mathematics
Languages : en
Pages : 378
Book Description
This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.
Publisher: Springer
ISBN: 4431559787
Category : Mathematics
Languages : en
Pages : 378
Book Description
This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.
A First Course in General Relativity
Author: Bernard F. Schutz
Publisher: Cambridge University Press
ISBN: 9780521277037
Category : Science
Languages : en
Pages : 396
Book Description
This textbook develops general relativity and its associated mathematics from a minimum of prerequisites, leading to a physical understanding of the theory in some depth.
Publisher: Cambridge University Press
ISBN: 9780521277037
Category : Science
Languages : en
Pages : 396
Book Description
This textbook develops general relativity and its associated mathematics from a minimum of prerequisites, leading to a physical understanding of the theory in some depth.
Applicable Differential Geometry
Author: M. Crampin
Publisher: Cambridge University Press
ISBN: 9780521231909
Category : Mathematics
Languages : en
Pages : 408
Book Description
An introduction to geometrical topics used in applied mathematics and theoretical physics.
Publisher: Cambridge University Press
ISBN: 9780521231909
Category : Mathematics
Languages : en
Pages : 408
Book Description
An introduction to geometrical topics used in applied mathematics and theoretical physics.
Geometric Structures of Information
Author: Frank Nielsen
Publisher: Springer
ISBN: 3030025209
Category : Technology & Engineering
Languages : en
Pages : 395
Book Description
This book focuses on information geometry manifolds of structured data/information and their advanced applications featuring new and fruitful interactions between several branches of science: information science, mathematics and physics. It addresses interrelations between different mathematical domains like shape spaces, probability/optimization & algorithms on manifolds, relational and discrete metric spaces, computational and Hessian information geometry, algebraic/infinite dimensional/Banach information manifolds, divergence geometry, tensor-valued morphology, optimal transport theory, manifold & topology learning, and applications like geometries of audio-processing, inverse problems and signal processing. The book collects the most important contributions to the conference GSI’2017 – Geometric Science of Information.
Publisher: Springer
ISBN: 3030025209
Category : Technology & Engineering
Languages : en
Pages : 395
Book Description
This book focuses on information geometry manifolds of structured data/information and their advanced applications featuring new and fruitful interactions between several branches of science: information science, mathematics and physics. It addresses interrelations between different mathematical domains like shape spaces, probability/optimization & algorithms on manifolds, relational and discrete metric spaces, computational and Hessian information geometry, algebraic/infinite dimensional/Banach information manifolds, divergence geometry, tensor-valued morphology, optimal transport theory, manifold & topology learning, and applications like geometries of audio-processing, inverse problems and signal processing. The book collects the most important contributions to the conference GSI’2017 – Geometric Science of Information.
A First Course in General Relativity
Author: Bernard Schutz
Publisher: Cambridge University Press
ISBN: 0521887054
Category : Science
Languages : en
Pages : 411
Book Description
Second edition of a widely-used textbook providing the first step into general relativity for undergraduate students with minimal mathematical background.
Publisher: Cambridge University Press
ISBN: 0521887054
Category : Science
Languages : en
Pages : 411
Book Description
Second edition of a widely-used textbook providing the first step into general relativity for undergraduate students with minimal mathematical background.