Author: Yuri Mnyukh
Publisher: Directscientific Press
ISBN: 9780615339726
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
The author's experimental discoveries in the field of solid-state phase transitions have brought about a thorough explanation of this phenomenon, including the puzzling nature of "lamda-anomalies." These phase transitions are found to be always a nucleation and crystal growth in a solid medium, while "second (or higher) order" phase transitions are a misconception: they do not exist. Ramifications of this new understanding are substatial. In this book the reader will find the first unified account for fundamentals of the three great areas of solid-state physics? Phase transitions, ferromagnetism and ferroelectricity, free of the inconsistencies of the conventional theories.
Fundamentals of Solid-State Phase Transitions, Ferromagnetism and Ferroelectricity
Author: Yuri Mnyukh
Publisher: Directscientific Press
ISBN: 9780615339726
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
The author's experimental discoveries in the field of solid-state phase transitions have brought about a thorough explanation of this phenomenon, including the puzzling nature of "lamda-anomalies." These phase transitions are found to be always a nucleation and crystal growth in a solid medium, while "second (or higher) order" phase transitions are a misconception: they do not exist. Ramifications of this new understanding are substatial. In this book the reader will find the first unified account for fundamentals of the three great areas of solid-state physics? Phase transitions, ferromagnetism and ferroelectricity, free of the inconsistencies of the conventional theories.
Publisher: Directscientific Press
ISBN: 9780615339726
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
The author's experimental discoveries in the field of solid-state phase transitions have brought about a thorough explanation of this phenomenon, including the puzzling nature of "lamda-anomalies." These phase transitions are found to be always a nucleation and crystal growth in a solid medium, while "second (or higher) order" phase transitions are a misconception: they do not exist. Ramifications of this new understanding are substatial. In this book the reader will find the first unified account for fundamentals of the three great areas of solid-state physics? Phase transitions, ferromagnetism and ferroelectricity, free of the inconsistencies of the conventional theories.
Phases of Matter and their Transitions
Author: Gijsbertus de With
Publisher: John Wiley & Sons
ISBN: 3527350314
Category : Science
Languages : en
Pages : 709
Book Description
Phases of Matter and their Transitions An all-in-one, comprehensive take on matter and its phase properties In Phases of Matter and their Transitions, accomplished materials scientist Dr. Gijsbertus de With delivers an accessible textbook for advanced students in the molecular sciences. It offers a balanced and self-contained treatment of the thermodynamic and structural aspects of phases and the transitions between them, covering solids, liquids, gases, and their interfaces. The book lays the groundwork to describe particles and their interactions from the perspective of classical and quantum mechanics and compares phenomenological and statistical thermodynamics. It also examines materials with special properties, like glasses, liquid crystals, and ferroelectrics. The author has included an extensive appendix with a guide to the mathematics and theoretical models employed in this resource. Readers will also find: Thorough introductions to classical and quantum mechanics, intermolecular interactions, and continuum mechanics Comprehensive explorations of thermodynamics, gases, liquids, and solids Practical discussions of surfaces, including their general aspects for solids and liquids Fulsome treatments of discontinuous and continuous transitions, including discussions of irreversibility and the return to equilibrium Perfect for advanced students in chemistry and physics, Phases of Matter and their Transitions will also earn a place in the libraries of students of materials science.
Publisher: John Wiley & Sons
ISBN: 3527350314
Category : Science
Languages : en
Pages : 709
Book Description
Phases of Matter and their Transitions An all-in-one, comprehensive take on matter and its phase properties In Phases of Matter and their Transitions, accomplished materials scientist Dr. Gijsbertus de With delivers an accessible textbook for advanced students in the molecular sciences. It offers a balanced and self-contained treatment of the thermodynamic and structural aspects of phases and the transitions between them, covering solids, liquids, gases, and their interfaces. The book lays the groundwork to describe particles and their interactions from the perspective of classical and quantum mechanics and compares phenomenological and statistical thermodynamics. It also examines materials with special properties, like glasses, liquid crystals, and ferroelectrics. The author has included an extensive appendix with a guide to the mathematics and theoretical models employed in this resource. Readers will also find: Thorough introductions to classical and quantum mechanics, intermolecular interactions, and continuum mechanics Comprehensive explorations of thermodynamics, gases, liquids, and solids Practical discussions of surfaces, including their general aspects for solids and liquids Fulsome treatments of discontinuous and continuous transitions, including discussions of irreversibility and the return to equilibrium Perfect for advanced students in chemistry and physics, Phases of Matter and their Transitions will also earn a place in the libraries of students of materials science.
Spin-Crossover Materials
Author: Malcolm A. Halcrow
Publisher: John Wiley & Sons
ISBN: 1118519310
Category : Science
Languages : en
Pages : 729
Book Description
The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applications presents a comprehensivesurvey of recent developments in spin-crossover research, highlighting the multidisciplinary nature of this rapidly expanding field. Following an introductory chapter which describes the spin-crossover phenomenon and historical development of the field, the book goes on to cover a wide range of topics including Spin-crossover in mononuclear, polynuclear and polymeric complexes Structure: function relationships in molecular spin-crossover materials Charge-transfer-induced spin-transitions Reversible spin-pairing in crystalline organic radicals Spin-state switching in solution Spin-crossover compounds in multifunctional switchable materials and nanotechnology Physical and theoretical methods for studying spin-crossover materials Spin-Crossover Materials: Properties and Applications is a valuable resource for academic researchers working in the field of spin-crossover materials and topics related to crystal engineering, solid state chemistry and physics, and molecular materials. Postgraduate students will also find this book useful as a comprehensive introduction to the field.
Publisher: John Wiley & Sons
ISBN: 1118519310
Category : Science
Languages : en
Pages : 729
Book Description
The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applications presents a comprehensivesurvey of recent developments in spin-crossover research, highlighting the multidisciplinary nature of this rapidly expanding field. Following an introductory chapter which describes the spin-crossover phenomenon and historical development of the field, the book goes on to cover a wide range of topics including Spin-crossover in mononuclear, polynuclear and polymeric complexes Structure: function relationships in molecular spin-crossover materials Charge-transfer-induced spin-transitions Reversible spin-pairing in crystalline organic radicals Spin-state switching in solution Spin-crossover compounds in multifunctional switchable materials and nanotechnology Physical and theoretical methods for studying spin-crossover materials Spin-Crossover Materials: Properties and Applications is a valuable resource for academic researchers working in the field of spin-crossover materials and topics related to crystal engineering, solid state chemistry and physics, and molecular materials. Postgraduate students will also find this book useful as a comprehensive introduction to the field.
Crystalline Molecular Complexes and Compounds
Author: Frank H. Herbstein
Publisher: Oxford University Press, USA
ISBN: 9780198568940
Category : Science
Languages : en
Pages : 634
Book Description
This book provides an account of the structure and properties of crystalline binary adducts. Such crystals are perhaps better known as molecular compounds and complexes and are estimated to make up one quarter of the world's crystals. More than 600 figures, 200 tables and 3500 references are included in the book.
Publisher: Oxford University Press, USA
ISBN: 9780198568940
Category : Science
Languages : en
Pages : 634
Book Description
This book provides an account of the structure and properties of crystalline binary adducts. Such crystals are perhaps better known as molecular compounds and complexes and are estimated to make up one quarter of the world's crystals. More than 600 figures, 200 tables and 3500 references are included in the book.
Advanced X-ray Crystallography
Author: Kari Rissanen
Publisher: Springer Science & Business Media
ISBN: 3642274072
Category : Science
Languages : en
Pages : 190
Book Description
Computational Studies of Crystal Structure and Bonding, by Angelo Gavezzotti Cryo-Crystallography: Diffraction at Low Temperature and More, by Piero Macchi High-Pressure Crystallography, by Malcolm I. McMahon Chemical X-Ray Photodiffraction: Principles, Examples, and Perspectives, by PanĨe Naumov Powder Diffraction Crystallography of Molecular Solids, by Kenneth D. M. Harris
Publisher: Springer Science & Business Media
ISBN: 3642274072
Category : Science
Languages : en
Pages : 190
Book Description
Computational Studies of Crystal Structure and Bonding, by Angelo Gavezzotti Cryo-Crystallography: Diffraction at Low Temperature and More, by Piero Macchi High-Pressure Crystallography, by Malcolm I. McMahon Chemical X-Ray Photodiffraction: Principles, Examples, and Perspectives, by PanĨe Naumov Powder Diffraction Crystallography of Molecular Solids, by Kenneth D. M. Harris
Fundamentals of Electroceramics
Author: R. K. Pandey
Publisher: John Wiley & Sons
ISBN: 1119057345
Category : Technology & Engineering
Languages : en
Pages : 304
Book Description
The first textbook to provide in-depth treatment of electroceramics with emphasis on applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics, and in electro-optics and acousto-optics Electroceramics is a class of ceramic materials used primarily for their electrical properties. This book covers the important topics relevant to this growing field and places great emphasis on devices and applications. It provides sufficient background in theory and mathematics so that readers can gain insight into phenomena that are unique to electroceramics. Each chapter has its own brief introduction with an explanation of how the said content impacts technology. Multiple examples are provided to reinforce the content as well as numerous end-of-chapter problems for students to solve and learn. The book also includes suggestions for advanced study and key words relevant to each chapter. Fundamentals of Electroceramics: Materials, Devices and Applications offers eleven chapters covering: 1.Nature and types of solid materials; 2. Processing of Materials; 3. Methods for Materials Characterization; 4. Binding Forces in Solids and Essential Elements of Crystallography; 5. Dominant Forces and Effects in Electroceramics; 6. Coupled Nonlinear Effects in Electroceramics; 7. Elements of Semiconductor; 8. Electroceramic Semiconductor Devices; 9. Electroceramics and Green Energy; 10.Electroceramic Magnetics; and 11. Electro-optics and Acousto-optics. Provides an in-depth treatment of electroceramics with the emphasis on fundamental theoretical concepts, devices, and applications with focus on non-linear dielectrics Emphasizes applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics and in electro-optics and acousto-optics Introductory textbook for students to learn and make an impact on technology Motivates students to get interested in research on various aspects of electroceramics at undergraduate and graduate levels leading to a challenging career path. Includes examples and problem questions within every chapter that prepare students well for independent thinking and learning. Fundamentals of Electroceramics: Materials, Devices and Applications is an invaluable academic textbook that will benefit all students, professors, researchers, scientists, engineers, and teachers of ceramic engineering, electrical engineering, applied physics, materials science, and engineering.
Publisher: John Wiley & Sons
ISBN: 1119057345
Category : Technology & Engineering
Languages : en
Pages : 304
Book Description
The first textbook to provide in-depth treatment of electroceramics with emphasis on applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics, and in electro-optics and acousto-optics Electroceramics is a class of ceramic materials used primarily for their electrical properties. This book covers the important topics relevant to this growing field and places great emphasis on devices and applications. It provides sufficient background in theory and mathematics so that readers can gain insight into phenomena that are unique to electroceramics. Each chapter has its own brief introduction with an explanation of how the said content impacts technology. Multiple examples are provided to reinforce the content as well as numerous end-of-chapter problems for students to solve and learn. The book also includes suggestions for advanced study and key words relevant to each chapter. Fundamentals of Electroceramics: Materials, Devices and Applications offers eleven chapters covering: 1.Nature and types of solid materials; 2. Processing of Materials; 3. Methods for Materials Characterization; 4. Binding Forces in Solids and Essential Elements of Crystallography; 5. Dominant Forces and Effects in Electroceramics; 6. Coupled Nonlinear Effects in Electroceramics; 7. Elements of Semiconductor; 8. Electroceramic Semiconductor Devices; 9. Electroceramics and Green Energy; 10.Electroceramic Magnetics; and 11. Electro-optics and Acousto-optics. Provides an in-depth treatment of electroceramics with the emphasis on fundamental theoretical concepts, devices, and applications with focus on non-linear dielectrics Emphasizes applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics and in electro-optics and acousto-optics Introductory textbook for students to learn and make an impact on technology Motivates students to get interested in research on various aspects of electroceramics at undergraduate and graduate levels leading to a challenging career path. Includes examples and problem questions within every chapter that prepare students well for independent thinking and learning. Fundamentals of Electroceramics: Materials, Devices and Applications is an invaluable academic textbook that will benefit all students, professors, researchers, scientists, engineers, and teachers of ceramic engineering, electrical engineering, applied physics, materials science, and engineering.
Fundamentals of Perovskite Oxides
Author: Gibin George
Publisher: CRC Press
ISBN: 1000195724
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This textbook entitled Fundamentals of Perovskite Oxides: Synthesis, Structure, Properties and Applications summarizes the structure, synthesis routes, and potential applications of perovskite oxide materials. Since these perovskite-type ceramic materials offer opportunities in a wide range of fields of science and engineering, the chapters are broadly organized into four sections of perovskite-type oxide materials and technology. Covers recent developments in perovskite oxides Serves as a quick reference of perovskite oxides information Describes novel synthesis routes for nanostructured perovskites Discusses comprehensive details for various crystal structures, synthesis methods, properties, and applications Applies to academic education, scientific research, and industrial R&D for materials research in real-world applications like bioengineering, catalysis, energy conversion, energy storage, environmental engineering, and data storage and sensing This book serves as a handy and practical guideline suitable for students, engineers, and researchers working with advanced ceramic materials.
Publisher: CRC Press
ISBN: 1000195724
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This textbook entitled Fundamentals of Perovskite Oxides: Synthesis, Structure, Properties and Applications summarizes the structure, synthesis routes, and potential applications of perovskite oxide materials. Since these perovskite-type ceramic materials offer opportunities in a wide range of fields of science and engineering, the chapters are broadly organized into four sections of perovskite-type oxide materials and technology. Covers recent developments in perovskite oxides Serves as a quick reference of perovskite oxides information Describes novel synthesis routes for nanostructured perovskites Discusses comprehensive details for various crystal structures, synthesis methods, properties, and applications Applies to academic education, scientific research, and industrial R&D for materials research in real-world applications like bioengineering, catalysis, energy conversion, energy storage, environmental engineering, and data storage and sensing This book serves as a handy and practical guideline suitable for students, engineers, and researchers working with advanced ceramic materials.
Ferroelectricity
Author: Julio A. Gonzalo
Publisher: John Wiley & Sons
ISBN: 3527618015
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
This indispensable collection of seminal papers on ferroelectricity provides an overview over almost a hundred years of basic and applied research. Containing historic contributions from renowned authors, this book presents developments in an area of science that is still rapidly growing. Although primarily aimed at scientists and academics involved in research, this will also be of use to students as well as newcomers to the field.
Publisher: John Wiley & Sons
ISBN: 3527618015
Category : Technology & Engineering
Languages : en
Pages : 191
Book Description
This indispensable collection of seminal papers on ferroelectricity provides an overview over almost a hundred years of basic and applied research. Containing historic contributions from renowned authors, this book presents developments in an area of science that is still rapidly growing. Although primarily aimed at scientists and academics involved in research, this will also be of use to students as well as newcomers to the field.
Fundamentals of Crystallography
Author: Carmelo Giacovazzo
Publisher: Oxford University Press, USA
ISBN:
Category : Science
Languages : en
Pages : 870
Book Description
Crystallography and structure theory have recently received increasing interest due to their role in understanding biological structures, high-temperature superconductors, and effects on mineral properties related to changes in temperature and pressure. This book offers a comprehensive account of the wide range of crystallography in many branches of science. The fundamentals, the most frequently used procedures and experimental techniques are all described in a detailed way. A number of appendices are devoted to more specialist aspects. The book is an updated and fully revised new edition with emphasis on the wide range of topical applications and current areas of research. Ample illustrations help clarify the subject matter. To provide a better understanding of the basics of crystallography, a compact disk has been added to this new edition, offering the facilities of modern graphics to simulate experiments, show complex images, and provide a number of exercises.
Publisher: Oxford University Press, USA
ISBN:
Category : Science
Languages : en
Pages : 870
Book Description
Crystallography and structure theory have recently received increasing interest due to their role in understanding biological structures, high-temperature superconductors, and effects on mineral properties related to changes in temperature and pressure. This book offers a comprehensive account of the wide range of crystallography in many branches of science. The fundamentals, the most frequently used procedures and experimental techniques are all described in a detailed way. A number of appendices are devoted to more specialist aspects. The book is an updated and fully revised new edition with emphasis on the wide range of topical applications and current areas of research. Ample illustrations help clarify the subject matter. To provide a better understanding of the basics of crystallography, a compact disk has been added to this new edition, offering the facilities of modern graphics to simulate experiments, show complex images, and provide a number of exercises.
Domains in Ferroic Crystals and Thin Films
Author: Alexander Tagantsev
Publisher: Springer Science & Business Media
ISBN: 1441914226
Category : Science
Languages : en
Pages : 828
Book Description
At present, the marketplace for professionals, researchers, and graduate students in solid-state physics and materials science lacks a book that presents a comprehensive discussion of ferroelectrics and related materials in a form that is suitable for experimentalists and engineers. This book proposes to present a wide coverage of domain-related issues concerning these materials. This coverage includes selected theoretical topics (which are covered in the existing literature) in addition to a plethora of experimental data which occupies over half of the book. The book presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observations of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. "Domains in Ferroic Crystals and Thin Films" covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In other textbooks on solid state physics, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In contrast, "Domains in Ferroic Crystals and Thin Films" concentrates on domain-related phenomena in nonmagnetic ferroics. These materials are still inadequately represented in solid state physics textbooks and monographs.
Publisher: Springer Science & Business Media
ISBN: 1441914226
Category : Science
Languages : en
Pages : 828
Book Description
At present, the marketplace for professionals, researchers, and graduate students in solid-state physics and materials science lacks a book that presents a comprehensive discussion of ferroelectrics and related materials in a form that is suitable for experimentalists and engineers. This book proposes to present a wide coverage of domain-related issues concerning these materials. This coverage includes selected theoretical topics (which are covered in the existing literature) in addition to a plethora of experimental data which occupies over half of the book. The book presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observations of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. "Domains in Ferroic Crystals and Thin Films" covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In other textbooks on solid state physics, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In contrast, "Domains in Ferroic Crystals and Thin Films" concentrates on domain-related phenomena in nonmagnetic ferroics. These materials are still inadequately represented in solid state physics textbooks and monographs.