Fundamentals of Image Data Mining

Fundamentals of Image Data Mining PDF Author: Dengsheng Zhang
Publisher: Springer Nature
ISBN: 3030692515
Category : Computers
Languages : en
Pages : 383

Get Book Here

Book Description
This unique and useful textbook presents a comprehensive review of the essentials of image data mining, and the latest cutting-edge techniques used in the field. The coverage spans all aspects of image analysis and understanding, offering deep insights into areas of feature extraction, machine learning, and image retrieval. The theoretical coverage is supported by practical mathematical models and algorithms, utilizing data from real-world examples and experiments. Topics and features: Describes essential tools for image mining, covering Fourier transforms, Gabor filters, and contemporary wavelet transforms Develops many new exercises (most with MATLAB code and instructions) Includes review summaries at the end of each chapter Analyses state-of-the-art models, algorithms, and procedures for image mining Integrates new sections on pre-processing, discrete cosine transform, and statistical inference and testing Demonstrates how features like color, texture, and shape can be mined or extracted for image representation Applies powerful classification approaches: Bayesian classification, support vector machines, neural networks, and decision trees Implements imaging techniques for indexing, ranking, and presentation, as well as database visualization This easy-to-follow, award-winning book illuminates how concepts from fundamental and advanced mathematics can be applied to solve a broad range of image data mining problems encountered by students and researchers of computer science. Students of mathematics and other scientific disciplines will also benefit from the applications and solutions described in the text, together with the hands-on exercises that enable the reader to gain first-hand experience of computing.

Fundamentals of Image Data Mining

Fundamentals of Image Data Mining PDF Author: Dengsheng Zhang
Publisher: Springer Nature
ISBN: 3030692515
Category : Computers
Languages : en
Pages : 383

Get Book Here

Book Description
This unique and useful textbook presents a comprehensive review of the essentials of image data mining, and the latest cutting-edge techniques used in the field. The coverage spans all aspects of image analysis and understanding, offering deep insights into areas of feature extraction, machine learning, and image retrieval. The theoretical coverage is supported by practical mathematical models and algorithms, utilizing data from real-world examples and experiments. Topics and features: Describes essential tools for image mining, covering Fourier transforms, Gabor filters, and contemporary wavelet transforms Develops many new exercises (most with MATLAB code and instructions) Includes review summaries at the end of each chapter Analyses state-of-the-art models, algorithms, and procedures for image mining Integrates new sections on pre-processing, discrete cosine transform, and statistical inference and testing Demonstrates how features like color, texture, and shape can be mined or extracted for image representation Applies powerful classification approaches: Bayesian classification, support vector machines, neural networks, and decision trees Implements imaging techniques for indexing, ranking, and presentation, as well as database visualization This easy-to-follow, award-winning book illuminates how concepts from fundamental and advanced mathematics can be applied to solve a broad range of image data mining problems encountered by students and researchers of computer science. Students of mathematics and other scientific disciplines will also benefit from the applications and solutions described in the text, together with the hands-on exercises that enable the reader to gain first-hand experience of computing.

Fundamentals of Digital Image Processing

Fundamentals of Digital Image Processing PDF Author: Chris Solomon
Publisher: John Wiley & Sons
ISBN: 1119957001
Category : Science
Languages : en
Pages : 364

Get Book Here

Book Description
This is an introductory to intermediate level text on the science of image processing, which employs the Matlab programming language to illustrate some of the elementary, key concepts in modern image processing and pattern recognition. The approach taken is essentially practical and the book offers a framework within which the concepts can be understood by a series of well chosen examples, exercises and computer experiments, drawing on specific examples from within science, medicine and engineering. Clearly divided into eleven distinct chapters, the book begins with a fast-start introduction to image processing to enhance the accessibility of later topics. Subsequent chapters offer increasingly advanced discussion of topics involving more challenging concepts, with the final chapter looking at the application of automated image classification (with Matlab examples) . Matlab is frequently used in the book as a tool for demonstrations, conducting experiments and for solving problems, as it is both ideally suited to this role and is widely available. Prior experience of Matlab is not required and those without access to Matlab can still benefit from the independent presentation of topics and numerous examples. Features a companion website www.wiley.com/go/solomon/fundamentals containing a Matlab fast-start primer, further exercises, examples, instructor resources and accessibility to all files corresponding to the examples and exercises within the book itself. Includes numerous examples, graded exercises and computer experiments to support both students and instructors alike.

Data Mining and Machine Learning

Data Mining and Machine Learning PDF Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 1108473989
Category : Business & Economics
Languages : en
Pages : 779

Get Book Here

Book Description
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.

Data Mining and Analysis

Data Mining and Analysis PDF Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 0521766338
Category : Computers
Languages : en
Pages : 607

Get Book Here

Book Description
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.

Image Processing

Image Processing PDF Author: Maria M. P. Petrou
Publisher: John Wiley & Sons
ISBN: 047074586X
Category : Science
Languages : en
Pages : 835

Get Book Here

Book Description
Following the success of the first edition, this thoroughly updated second edition of Image Processing: The Fundamentals will ensure that it remains the ideal text for anyone seeking an introduction to the essential concepts of image processing. New material includes image processing and colour, sine and cosine transforms, Independent Component Analysis (ICA), phase congruency and the monogenic signal and several other new topics. These updates are combined with coverage of classic topics in image processing, such as orthogonal transforms and image enhancement, making this a truly comprehensive text on the subject. Key features: Presents material at two levels of difficulty: the main text addresses the fundamental concepts and presents a broad view of image processing, whilst more advanced material is interleaved in boxes throughout the text, providing further reference for those who wish to examine each technique in depth. Contains a large number of fully worked out examples. Focuses on an understanding of how image processing methods work in practice. Illustrates complex algorithms on a step-by-step basis, and lists not only the good practices but also identifies the pitfalls in each case. Uses a clear question and answer structure. Includes a CD containing the MATLAB® code of the various examples and algorithms presented in the book. There is also an accompanying website with slides available for download for instructors as a teaching resource. Image Processing: The Fundamentals, Second Edition is an ideal teaching resource for both undergraduate and postgraduate students. It will also be of value to researchers of various disciplines from medicine to mathematics with a professional interest in image processing

Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation

Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation PDF Author: Prasad S. Thenkabail
Publisher: CRC Press
ISBN: 1351673297
Category : Technology & Engineering
Languages : en
Pages : 491

Get Book Here

Book Description
Written by leading global experts, including pioneers in the field, the four-volume set on Hyperspectral Remote Sensing of Vegetation, Second Edition, reviews existing state-of-the-art knowledge, highlights advances made in different areas, and provides guidance for the appropriate use of hyperspectral data in the study and management of agricultural crops and natural vegetation. Volume I, Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation introduces the fundamentals of hyperspectral or imaging spectroscopy data, including hyperspectral data processes, sensor systems, spectral libraries, and data mining and analysis, covering both the strengths and limitations of these topics. This book also presents and discusses hyperspectral narrowband data acquired in numerous unique spectral bands in the entire length of the spectrum from various ground-based, airborne, and spaceborne platforms. The concluding chapter provides readers with useful guidance on the highlights and essence of Volume I through the editors’ perspective. Key Features of Volume I: Provides the fundamentals of hyperspectral remote sensing used in agricultural crops and vegetation studies. Discusses the latest advances in hyperspectral remote sensing of ecosystems and croplands. Develops online hyperspectral libraries, proximal sensing and phenotyping for understanding, modeling, mapping, and monitoring crop and vegetation traits. Implements reflectance spectroscopy of soils and vegetation. Enumerates hyperspectral data mining and data processing methods, approaches, and machine learning algorithms. Explores methods and approaches for data mining and overcoming data redundancy; Highlights the advanced methods for hyperspectral data processing steps by developing or implementing appropriate algorithms and coding the same for processing on a cloud computing platform like the Google Earth Engine. Integrates hyperspectral with other data, such as the LiDAR data, in the study of vegetation. Includes best global expertise on hyperspectral remote sensing of agriculture, crop water use, plant species detection, crop productivity and water productivity mapping, and modeling.

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques PDF Author: Jiawei Han
Publisher: Elsevier
ISBN: 0123814804
Category : Computers
Languages : en
Pages : 740

Get Book Here

Book Description
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Fundamentals of Relational Database Management Systems

Fundamentals of Relational Database Management Systems PDF Author: S. Sumathi
Publisher: Springer Science & Business Media
ISBN: 3540483977
Category : Computers
Languages : en
Pages : 793

Get Book Here

Book Description
This book provides comprehensive coverage of fundamentals of database management system. It contains a detailed description on Relational Database Management System Concepts. There are a variety of solved examples and review questions with solutions. This book is for those who require a better understanding of relational data modeling, its purpose, its nature, and the standards used in creating relational data model.

Matrix Methods in Data Mining and Pattern Recognition

Matrix Methods in Data Mining and Pattern Recognition PDF Author: Lars Elden
Publisher: SIAM
ISBN: 0898716268
Category : Computers
Languages : en
Pages : 226

Get Book Here

Book Description
Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.

Fundamentals of Data Science DataMining MachineLearning DeepLearning and IoTs

Fundamentals of Data Science DataMining MachineLearning DeepLearning and IoTs PDF Author: Dr. P. Kavitha
Publisher: Leilani Katie Publication
ISBN: 8196856768
Category : Computers
Languages : en
Pages : 162

Get Book Here

Book Description
Dr. P. Kavitha, Associate Professor, Department of Computer Science, Sri Ramakrishna College of Arts & Science, Coimbatore, Tamil Nadu, India. Mr. P. Jayasheelan, Assistant Professor, Department of Computer Science, Sri Krishna Aditya College of arts and Science, Coimbatore, Tamil Nadu, India. Ms. C. Karpagam, Assistant Professor, Department of Computer Science with Data Analytics, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu, India. Dr. K. Prabavathy, Assistant Professor, Department of Data Science and Analytics, Sree Saraswathi Thyagaraja College, Pollachi, Coimbatore, Tamil Nadu, India.