Functionlised N-heterocyclic Carbenes and Amido Imino Mixed Donors as Supporting Ligands in Organometallic Catalysis

Functionlised N-heterocyclic Carbenes and Amido Imino Mixed Donors as Supporting Ligands in Organometallic Catalysis PDF Author: Scott Winston
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Functionlised N-heterocyclic Carbenes and Amido Imino Mixed Donors as Supporting Ligands in Organometallic Catalysis

Functionlised N-heterocyclic Carbenes and Amido Imino Mixed Donors as Supporting Ligands in Organometallic Catalysis PDF Author: Scott Winston
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Functionalised N-heterocyclic carbenes and amido/imino mixed donors as supporting ligands in organometallic catalysis

Functionalised N-heterocyclic carbenes and amido/imino mixed donors as supporting ligands in organometallic catalysis PDF Author: Scott Winston
Publisher:
ISBN:
Category :
Languages : en
Pages : 195

Get Book Here

Book Description


Functionalised N-Heterocyclic Carbene Complexes

Functionalised N-Heterocyclic Carbene Complexes PDF Author: Olaf Kühl
Publisher: John Wiley & Sons
ISBN: 0470685840
Category : Science
Languages : en
Pages : 364

Get Book Here

Book Description
N-heterocyclic carbenes (NHCs) have found increasing use as reagents for a range of organic transformations and in asymmetric organocatalysis. The performance of these molecules can be improved and tuned by functionalisation. Functionalised carbenes can anchor free carbenes to the metal site, introduce hemilability, provide a means to immobilise transition metal carbene catalysts, introduce chirality, provide a chelate ligand or bridge two metal centres. NHC can be attached to carbohydrates and campher, derived from amino acids and purines, they can be used as organocatalysts mimicking vitamin B1 or as weak “solvent” donors in lanthanide chemistry. Functionalised N-Heterocyclic Carbene Complexes describes major trends in functionalised NHC ligands, aiming to assist readers in their attempts to develop and apply their own functionalised carbenes. After an introduction to the chemistry and behaviour of NHC, the book gives a detailed description of functionalised carbenes and their complexes according to a range of functional groups, each with a discussion of the synthetic route, structure, stability and performance. Functionalised N-Heterocyclic Carbene Complexes is an essential guide to fine-tuning this important class of compounds for practitioners, researchers and advanced students working in synthetic organometallic and organic chemistry and catalysis.

Late Transition Metal Complexes Incorporating Hemilabile Mixed-donor N-heterocyclic Carbene Ligands

Late Transition Metal Complexes Incorporating Hemilabile Mixed-donor N-heterocyclic Carbene Ligands PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The discovery of N-heterocyclic carbenes (NHC) has dramatically affected the world of catalysis. Their inherent properties that make them excellent auxiliary ligands for catalytic processes have countless laboratories worldwide probing and exploiting every notable feature they possess. However, while there is no shortage of attention in this field of research, there has been considerably less interest in NHCs with an ability chelate to metals via a mixed-donor ligand architecture. Thus, this thesis describes the synthesis and application of a ligand set comprised of bidentate mixed-donor NHC ligands. The ligands prepared all contain a mesitylimidazol-2-ylidene core unit, but incorporate different donor-functionalized tethers. These mixed-donor NHC ligands are synthesized by using a strong base, such as KN(SiMe3)2, to deprotonate the imidazolium salt precursors. This strategy was used to effectively prepare 1-mesityl-3-(2-(mesitylamino)ethyl)imidazol-2-ylidene, Mes[CNH] and 1-mesityl-3-(2-aminoethyl)imidazol-2-ylidene, Mes[CNH2]. Mes[CNH] was found to be a convenient proligand for the synthesis of various M-NHC (M = Rh, Ir, Ru, Pd, Ni, Fe, Ag, Li) compounds. These Mes[CNH]-M complexes demonstrated the hemilabile character of the Mes[CNH] ligand forming complexes that incorporated either a coordinated or uncoordinated amino tether. Mes[CNH]M(diene)Cl, Mes[CN]M(diene) and [Mes[CNH]M(diene)]BF4(M = Rh, Ir; diene = 1,5-cyclooctadiene, 2,5-norbornadiene) were synthesized and investigated for their ability to perform hydrogenation and hydrosilylation reactions with various substrates. Mes[CNH]Ru(=CHPh)(PCy3)Cl2, Mes[CNH]Ru(=CHPh)(py)Cl2 (py = pyridine) and Mes[CNH]Ru(=CHPh)(PMe3)Cl2 were also synthesized and fully characterized. The activity of the former two Ru complexes was studied for their ability to catalyze ring-closing metathesis (RCM) and ring-opening metathesis polymerization (ROMP) reactions. In addition, the phosphine dissociation rate of Mes[CNH]Ru(=CHPh)(PCy3).

The Organometallic Chemistry of N-heterocyclic Carbenes

The Organometallic Chemistry of N-heterocyclic Carbenes PDF Author: Han Vinh Huynh
Publisher: John Wiley & Sons
ISBN: 1118593774
Category : Science
Languages : en
Pages : 354

Get Book Here

Book Description
The Organometallic Chemistry of N-heterocyclic Carbenes describes various aspects of N-heterocyclic Carbenes (NHCs) and their transition metal complexes at an entry level suitable for advanced undergraduate students and above. The book starts with a historical overview on the quest for carbenes and their complexes. Subsequently, unique properties, reactivities and nomenclature of the four classical NHCs derived from imidazoline, imidazole, benzimidazole and 1,2,4-triazole are elaborated. General and historically relevant synthetic aspects for NHCs, their precursors and complexes are then explained. The book continues with coverage on the preparation and characteristics of selected NHC complexes containing the most common metals in this area, i.e. Ni, Pd, Pt, Ag, Cu, Au, Ru, Rh and Ir. The book concludes with an overview and outlook on the development of various non-classical NHCs beyond the four classical types. Topics covered include: Stabilization, dimerization and decomposition of NHCs Stereoelectronic properties of NHCs and their evaluation Diversity of NHCs Isomers of NHC complexes and their identification NMR spectroscopic signatures of NHC complexes normal, abnormal and mesoionic NHCs The Organometallic Chemistry of N-heterocyclic Carbenes is an essential resource for all students and researchers interested in this increasingly important and popular field of research.

N-Heterocyclic Carbenes in Transition Metal Catalysis

N-Heterocyclic Carbenes in Transition Metal Catalysis PDF Author: Frank Glorius
Publisher: Springer Science & Business Media
ISBN: 3540369295
Category : Science
Languages : en
Pages : 241

Get Book Here

Book Description
In this book leading experts have surveyed major areas of application of NHC metal complexes in catalysis. The authors have placed a special focus on nickel- and palladium-catalyzed reactions, on applications in metathesis reactions, on oxidation reactions and on the use of chiral NHC-based catalysts. This compilation is rounded out by an introductory chapter and a chapter dealing with synthetic routes to NHC metal complexes.

Chiral Donor-Functionalized N-Heterocyclic Carbenes for Asymmetric Catalytic Applications in Hydrogenation - From Design to Application

Chiral Donor-Functionalized N-Heterocyclic Carbenes for Asymmetric Catalytic Applications in Hydrogenation - From Design to Application PDF Author: Kai Yang Wan
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
In this thesis, the synthetic protocol for a new class of enantiopure, primary-amine tethered N-heterocyclic carbene (NHC) ligands is described. The synthesis, coordination chemistry, and applications in catalysis for three ligands from this class with general formula (S,S)/(R,R)-H2N-CHPh-CHPh-NHC (NHC = -NCHCHN(C)R, R = Me, tBu, or Mes) are reported. The imidazolium salt of these ligands can be prepared in high yield and purity from the SN1 reaction between chiral sulfamidates and the corresponding N-substituted imidazoles. The method of coordination of the NHC ligands to metals depends on the acidity of the C-H functional in the imidazolium salts. Silver and copper compounds can be prepared in high yield with the ligand to the metal ratio of 2:1 or 1:1. Ruthenium, iridium, and rhodium complexes can also be prepared via transmetallation from the silver or copper reagents, intramolecular base deprotonation, or C-H oxidative addition. Four ruthenium complexes and two iridium complexes based on these ligands were proven active for ketone hydrogenation, under relatively mild condition (50°C, 25 bar H2(g)). Three half-sandwich ruthenium compounds containing Cp (cyclopentadienyl) or Cp* (1,2,3,4,5-pentamethylcyclopentadienyl) are highly active aryl and alkyl hydrogenation catalysts with TOF (turnover frequency) up to 67 s-1, TON (turnover number) up to 104, and ee (enantiomeric excess) up to 86%. An experimental and computational study of the half-sandwich ruthenium systems suggests that the heterolytic splitting of dihydrogen over the metal-amido bond and hydride transfer from the catalyst to the substrate can both be rate-determining. An alcohol-assisted mechanism was also calculated to explain the rate enhancement when the catalysis was conducted in polar, protic solvents such as 2-PrOH. A full experimental and computational study was also performed for a Fe(P-NH-P') system. Similarly, heterolytic splitting and hydride transfer are the two most energy demanding transition states. In addition, the enantiodetermining step (EDS) of this asymmetric ketone hydrogenation catalyst was calculated, and the origins of enantioselectivity were summarized as steric repulsion, the high compressibility of the backbone, and H-bond contributed stabilization.

N-Heterocyclic Carbenes

N-Heterocyclic Carbenes PDF Author: Silvia Diez-Gonzalez
Publisher: Royal Society of Chemistry
ISBN: 1782624236
Category : Science
Languages : en
Pages : 636

Get Book Here

Book Description
In less than 20 years N-heterocyclic carbenes (NHCs) have become well-established ancillary ligands for the preparation of transition metal-based catalysts. This is mainly due to the fact that NHCs tend to bind strongly to metal centres, avoiding the need of excess ligand in catalytic reactions. Also, NHC‒metal complexes are often insensitive to air and moisture, and have proven remarkably resistant to oxidation. This book showcases the wide variety of applications of NHCs in different chemistry fields beyond being simple phosphine mimics. This second edition has been updated throughout, and now includes a new chapter on NHC‒main group element complexes. It covers the synthesis of NHC ligands and their corresponding metal complexes, as well as their bonding and stereoelectronic properties and applications in catalysis. This is complemented by related topics such as organocatalysis and biologically active complexes. Written for organic and inorganic chemists, this book is ideal for postgraduates, researchers and industrialists.

Applications of Amido-N-heterocyclic Carbene Ligands in Bifunctional Catalysis

Applications of Amido-N-heterocyclic Carbene Ligands in Bifunctional Catalysis PDF Author: Christopher G. Daly
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


N-Heterocyclic Carbenes in Organocatalysis

N-Heterocyclic Carbenes in Organocatalysis PDF Author: Akkattu T. Biju
Publisher: John Wiley & Sons
ISBN: 3527809058
Category : Science
Languages : en
Pages : 440

Get Book Here

Book Description
Summarizing the emerging field of N-heterocyclic carbenes used in organocatalysis, this is an excellent overview of the synthesis and applications of NHCs focusing on carbon-carbon and carbon-heteroatom bond formation. Alongside comprehensive coverage of the synthesis, characteristics and applications, this handbook and ready reference also includes chapters on NHCs for polymerization reactions and natural product synthesis.