Functional Differential Geometry

Functional Differential Geometry PDF Author: Gerald Jay Sussman
Publisher: MIT Press
ISBN: 0262019345
Category : Mathematics
Languages : en
Pages : 249

Get Book Here

Book Description
An explanation of the mathematics needed as a foundation for a deep understanding of general relativity or quantum field theory. Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level. The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors' integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.

Functional Differential Geometry

Functional Differential Geometry PDF Author: Gerald Jay Sussman
Publisher: MIT Press
ISBN: 0262019345
Category : Mathematics
Languages : en
Pages : 249

Get Book Here

Book Description
An explanation of the mathematics needed as a foundation for a deep understanding of general relativity or quantum field theory. Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level. The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors' integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.

Functional Differential Geometry

Functional Differential Geometry PDF Author: Gerald Jay Sussman
Publisher: MIT Press
ISBN: 0262315610
Category : Mathematics
Languages : en
Pages : 249

Get Book Here

Book Description
An explanation of the mathematics needed as a foundation for a deep understanding of general relativity or quantum field theory. Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level. The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors' integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.

Partial Differential Equations 2

Partial Differential Equations 2 PDF Author: Friedrich Sauvigny
Publisher: Springer Science & Business Media
ISBN: 3540344624
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods.

Structure and Interpretation of Classical Mechanics, second edition

Structure and Interpretation of Classical Mechanics, second edition PDF Author: Gerald Jay Sussman
Publisher: MIT Press
ISBN: 0262028964
Category : Science
Languages : en
Pages : 580

Get Book Here

Book Description
The new edition of a classic text that concentrates on developing general methods for studying the behavior of classical systems, with extensive use of computation. We now know that there is much more to classical mechanics than previously suspected. Derivations of the equations of motion, the focus of traditional presentations of mechanics, are just the beginning. This innovative textbook, now in its second edition, concentrates on developing general methods for studying the behavior of classical systems, whether or not they have a symbolic solution. It focuses on the phenomenon of motion and makes extensive use of computer simulation in its explorations of the topic. It weaves recent discoveries in nonlinear dynamics throughout the text, rather than presenting them as an afterthought. Explorations of phenomena such as the transition to chaos, nonlinear resonances, and resonance overlap to help the student develop appropriate analytic tools for understanding. The book uses computation to constrain notation, to capture and formalize methods, and for simulation and symbolic analysis. The requirement that the computer be able to interpret any expression provides the student with strict and immediate feedback about whether an expression is correctly formulated. This second edition has been updated throughout, with revisions that reflect insights gained by the authors from using the text every year at MIT. In addition, because of substantial software improvements, this edition provides algebraic proofs of more generality than those in the previous edition; this improvement permeates the new edition.

A Short Course in Differential Geometry and Topology

A Short Course in Differential Geometry and Topology PDF Author: A. T. Fomenko
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
This volume is intended for graduate and research students in mathematics and physics. It covers general topology, nonlinear co-ordinate systems, theory of smooth manifolds, theory of curves and surfaces, transformation groupstensor analysis and Riemannian geometry theory of intogration and homologies, fundamental groups and variational principles in Riemannian geometry. The text is presented in a form that is easily accessible to students and is supplemented by a large number of examples, problems, drawings and appendices.

Introduction to Differential Geometry

Introduction to Differential Geometry PDF Author: Joel W. Robbin
Publisher: Springer Nature
ISBN: 3662643405
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Differential Geometry and Its Applications

Differential Geometry and Its Applications PDF Author: John Oprea
Publisher: MAA
ISBN: 9780883857489
Category : Mathematics
Languages : en
Pages : 508

Get Book Here

Book Description
This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.

Manifolds, Sheaves, and Cohomology

Manifolds, Sheaves, and Cohomology PDF Author: Torsten Wedhorn
Publisher: Springer
ISBN: 3658106336
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.

Modern Differential Geometry for Physicists

Modern Differential Geometry for Physicists PDF Author: Chris J. Isham
Publisher: Allied Publishers
ISBN: 9788177643169
Category : Geometry, Differential
Languages : en
Pages : 308

Get Book Here

Book Description


Geometry of Vector Sheaves

Geometry of Vector Sheaves PDF Author: Anastasios Mallios
Publisher: Springer Science & Business Media
ISBN: 9401150060
Category : Mathematics
Languages : en
Pages : 457

Get Book Here

Book Description
This two-volume monograph obtains fundamental notions and results of the standard differential geometry of smooth (CINFINITY) manifolds, without using differential calculus. Here, the sheaf-theoretic character is emphasised. This has theoretical advantages such as greater perspective, clarity and unification, but also practical benefits ranging from elementary particle physics, via gauge theories and theoretical cosmology (`differential spaces'), to non-linear PDEs (generalised functions). Thus, more general applications, which are no longer `smooth' in the classical sense, can be coped with. The treatise might also be construed as a new systematic endeavour to confront the ever-increasing notion that the `world around us is far from being smooth enough'. Audience: This work is intended for postgraduate students and researchers whose work involves differential geometry, global analysis, analysis on manifolds, algebraic topology, sheaf theory, cohomology, functional analysis or abstract harmonic analysis.