Author: Gerrit Coddens
Publisher: World Scientific
ISBN: 1783266392
Category : Science
Languages : en
Pages : 404
Book Description
From Spinors to Quantum Mechanics discusses group theory and its use in quantum mechanics. Chapters 1 to 4 offer an introduction to group theory, and it provides the reader with an exact and clear intuition of what a spinor is, showing that spinors are just a mathematically complete notation for group elements. Chapter 5 contains the first rigorous derivation of the Dirac equation from a simple set of assumptions. The remaining chapters will interest the advanced reader who is interested in the meaning of quantum mechanics. They propose a novel approach to the foundations of quantum mechanics, based on the idea that the meaning of the formalism is already provided by the mathematics.In the traditional approach to quantum mechanics as initiated by Heisenberg, one has to start from a number of experimental results and then derive a set of rules and calculations that reproduce the observed experimental results. In such an inductive approach the underlying assumptions are not given at the outset. The reader has to figure them out, and this has proven to be difficult. The book shows that a different, bottom-up approach to quantum mechanics is possible, which merits further investigation as it demonstrates that with the methods used, the reader can obtain the correct results in a context where one would hitherto not expect this to be possible.
From Spinors To Quantum Mechanics
Author: Gerrit Coddens
Publisher: World Scientific
ISBN: 1783266392
Category : Science
Languages : en
Pages : 404
Book Description
From Spinors to Quantum Mechanics discusses group theory and its use in quantum mechanics. Chapters 1 to 4 offer an introduction to group theory, and it provides the reader with an exact and clear intuition of what a spinor is, showing that spinors are just a mathematically complete notation for group elements. Chapter 5 contains the first rigorous derivation of the Dirac equation from a simple set of assumptions. The remaining chapters will interest the advanced reader who is interested in the meaning of quantum mechanics. They propose a novel approach to the foundations of quantum mechanics, based on the idea that the meaning of the formalism is already provided by the mathematics.In the traditional approach to quantum mechanics as initiated by Heisenberg, one has to start from a number of experimental results and then derive a set of rules and calculations that reproduce the observed experimental results. In such an inductive approach the underlying assumptions are not given at the outset. The reader has to figure them out, and this has proven to be difficult. The book shows that a different, bottom-up approach to quantum mechanics is possible, which merits further investigation as it demonstrates that with the methods used, the reader can obtain the correct results in a context where one would hitherto not expect this to be possible.
Publisher: World Scientific
ISBN: 1783266392
Category : Science
Languages : en
Pages : 404
Book Description
From Spinors to Quantum Mechanics discusses group theory and its use in quantum mechanics. Chapters 1 to 4 offer an introduction to group theory, and it provides the reader with an exact and clear intuition of what a spinor is, showing that spinors are just a mathematically complete notation for group elements. Chapter 5 contains the first rigorous derivation of the Dirac equation from a simple set of assumptions. The remaining chapters will interest the advanced reader who is interested in the meaning of quantum mechanics. They propose a novel approach to the foundations of quantum mechanics, based on the idea that the meaning of the formalism is already provided by the mathematics.In the traditional approach to quantum mechanics as initiated by Heisenberg, one has to start from a number of experimental results and then derive a set of rules and calculations that reproduce the observed experimental results. In such an inductive approach the underlying assumptions are not given at the outset. The reader has to figure them out, and this has proven to be difficult. The book shows that a different, bottom-up approach to quantum mechanics is possible, which merits further investigation as it demonstrates that with the methods used, the reader can obtain the correct results in a context where one would hitherto not expect this to be possible.
Spinors in Physics
Author: Jean Hladik
Publisher: Springer Science & Business Media
ISBN: 1461214882
Category : Science
Languages : en
Pages : 228
Book Description
Invented by Dirac in creating his relativistic quantum theory of the electron, spinors are important in quantum theory, relativity, nuclear physics, atomic and molecular physics, and condensed matter physics. Essentially, they are the mathematical entities that correspond to electrons in the same way that ordinary wave functions correspond to classical particles. Because of their relations to the rotation group SO(n) and the unitary group SU(n), this discussion will be of interest to applied mathematicians as well as physicists.
Publisher: Springer Science & Business Media
ISBN: 1461214882
Category : Science
Languages : en
Pages : 228
Book Description
Invented by Dirac in creating his relativistic quantum theory of the electron, spinors are important in quantum theory, relativity, nuclear physics, atomic and molecular physics, and condensed matter physics. Essentially, they are the mathematical entities that correspond to electrons in the same way that ordinary wave functions correspond to classical particles. Because of their relations to the rotation group SO(n) and the unitary group SU(n), this discussion will be of interest to applied mathematicians as well as physicists.
The Theory of Spinors
Author: Élie Cartan
Publisher: Courier Corporation
ISBN: 0486137325
Category : Mathematics
Languages : en
Pages : 193
Book Description
Describes orthgonal and related Lie groups, using real or complex parameters and indefinite metrics. Develops theory of spinors by giving a purely geometric definition of these mathematical entities.
Publisher: Courier Corporation
ISBN: 0486137325
Category : Mathematics
Languages : en
Pages : 193
Book Description
Describes orthgonal and related Lie groups, using real or complex parameters and indefinite metrics. Develops theory of spinors by giving a purely geometric definition of these mathematical entities.
Introduction to Quantum Mechanics with Applications to Chemistry
Author: Linus Pauling
Publisher: Courier Corporation
ISBN: 0486134938
Category : Science
Languages : en
Pages : 500
Book Description
Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.
Publisher: Courier Corporation
ISBN: 0486134938
Category : Science
Languages : en
Pages : 500
Book Description
Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.
Theory of Spinors and Its Application in Physics and Mechanics
Author: Vladimir A. Zhelnorovich
Publisher: Springer Nature
ISBN: 3030278360
Category : Science
Languages : en
Pages : 402
Book Description
This book contains a systematic exposition of the theory of spinors in finite-dimensional Euclidean and Riemannian spaces. The applications of spinors in field theory and relativistic mechanics of continuous media are considered. The main mathematical part is connected with the study of invariant algebraic and geometric relations between spinors and tensors. The theory of spinors and the methods of the tensor representation of spinors and spinor equations are thoroughly expounded in four-dimensional and three-dimensional spaces. Very useful and important relations are derived that express the derivatives of the spinor fields in terms of the derivatives of various tensor fields. The problems associated with an invariant description of spinors as objects that do not depend on the choice of a coordinate system are addressed in detail. As an application, the author considers an invariant tensor formulation of certain classes of differential spinor equations containing, in particular, the most important spinor equations of field theory and quantum mechanics. Exact solutions of the Einstein–Dirac equations, nonlinear Heisenberg’s spinor equations, and equations for relativistic spin fluids are given. The book presents a large body of factual material and is suited for use as a handbook. It is intended for specialists in theoretical physics, as well as for students and post-graduate students of physical and mathematical specialties.
Publisher: Springer Nature
ISBN: 3030278360
Category : Science
Languages : en
Pages : 402
Book Description
This book contains a systematic exposition of the theory of spinors in finite-dimensional Euclidean and Riemannian spaces. The applications of spinors in field theory and relativistic mechanics of continuous media are considered. The main mathematical part is connected with the study of invariant algebraic and geometric relations between spinors and tensors. The theory of spinors and the methods of the tensor representation of spinors and spinor equations are thoroughly expounded in four-dimensional and three-dimensional spaces. Very useful and important relations are derived that express the derivatives of the spinor fields in terms of the derivatives of various tensor fields. The problems associated with an invariant description of spinors as objects that do not depend on the choice of a coordinate system are addressed in detail. As an application, the author considers an invariant tensor formulation of certain classes of differential spinor equations containing, in particular, the most important spinor equations of field theory and quantum mechanics. Exact solutions of the Einstein–Dirac equations, nonlinear Heisenberg’s spinor equations, and equations for relativistic spin fluids are given. The book presents a large body of factual material and is suited for use as a handbook. It is intended for specialists in theoretical physics, as well as for students and post-graduate students of physical and mathematical specialties.
Quantum Mechanics
Author: Eugene D. Commins
Publisher: Cambridge University Press
ISBN: 1316157075
Category : Science
Languages : en
Pages : 695
Book Description
Eugene D. Commins takes an experimentalist's approach to quantum mechanics, preferring to use concrete physical explanations over formal, abstract descriptions to address the needs and interests of a diverse group of students. Keeping physics at the foreground and explaining difficult concepts in straightforward language, Commins examines the many modern developments in quantum physics, including Bell's inequalities, locality, photon polarization correlations, the stability of matter, Casimir forces, geometric phases, Aharonov–Bohm and Aharonov–Casher effects, magnetic monopoles, neutrino oscillations, neutron interferometry, the Higgs mechanism, and the electroweak standard model. The text is self-contained, covering the necessary background on atomic and molecular structure in addition to the traditional topics. Developed from the author's well-regarded course notes for his popular first-year graduate course at the University of California, Berkeley, instruction is supported by over 160 challenging problems to illustrate concepts and provide students with ample opportunity to test their knowledge and understanding.
Publisher: Cambridge University Press
ISBN: 1316157075
Category : Science
Languages : en
Pages : 695
Book Description
Eugene D. Commins takes an experimentalist's approach to quantum mechanics, preferring to use concrete physical explanations over formal, abstract descriptions to address the needs and interests of a diverse group of students. Keeping physics at the foreground and explaining difficult concepts in straightforward language, Commins examines the many modern developments in quantum physics, including Bell's inequalities, locality, photon polarization correlations, the stability of matter, Casimir forces, geometric phases, Aharonov–Bohm and Aharonov–Casher effects, magnetic monopoles, neutrino oscillations, neutron interferometry, the Higgs mechanism, and the electroweak standard model. The text is self-contained, covering the necessary background on atomic and molecular structure in addition to the traditional topics. Developed from the author's well-regarded course notes for his popular first-year graduate course at the University of California, Berkeley, instruction is supported by over 160 challenging problems to illustrate concepts and provide students with ample opportunity to test their knowledge and understanding.
Spinors and Space-Time: Volume 2, Spinor and Twistor Methods in Space-Time Geometry
Author: Roger Penrose
Publisher: Cambridge University Press
ISBN: 9780521347860
Category : Mathematics
Languages : en
Pages : 516
Book Description
In the two volumes that comprise this work Roger Penrose and Wolfgang Rindler introduce the calculus of 2-spinors and the theory of twistors, and discuss in detail how these powerful and elegant methods may be used to elucidate the structure and properties of space-time. In volume 1, Two-spinor calculus and relativistic fields, the calculus of 2-spinors is introduced and developed. Volume 2, Spinor and twistor methods in space-time geometry, introduces the theory of twistors, and studies in detail how the theory of twistors and 2-spinors can be applied to the study of space-time. This work will be of great value to all those studying relativity, differential geometry, particle physics and quantum field theory from beginning graduate students to experts in these fields.
Publisher: Cambridge University Press
ISBN: 9780521347860
Category : Mathematics
Languages : en
Pages : 516
Book Description
In the two volumes that comprise this work Roger Penrose and Wolfgang Rindler introduce the calculus of 2-spinors and the theory of twistors, and discuss in detail how these powerful and elegant methods may be used to elucidate the structure and properties of space-time. In volume 1, Two-spinor calculus and relativistic fields, the calculus of 2-spinors is introduced and developed. Volume 2, Spinor and twistor methods in space-time geometry, introduces the theory of twistors, and studies in detail how the theory of twistors and 2-spinors can be applied to the study of space-time. This work will be of great value to all those studying relativity, differential geometry, particle physics and quantum field theory from beginning graduate students to experts in these fields.
Not Even Wrong
Author: Peter Woit
Publisher: Basic Books
ISBN: 046500363X
Category : Science
Languages : en
Pages : 336
Book Description
At what point does theory depart the realm of testable hypothesis and come to resemble something like aesthetic speculation, or even theology? The legendary physicist Wolfgang Pauli had a phrase for such ideas: He would describe them as "not even wrong," meaning that they were so incomplete that they could not even be used to make predictions to compare with observations to see whether they were wrong or not. In Peter Woit's view, superstring theory is just such an idea. In Not Even Wrong , he shows that what many physicists call superstring "theory" is not a theory at all. It makes no predictions, even wrong ones, and this very lack of falsifiability is what has allowed the subject to survive and flourish. Not Even Wrong explains why the mathematical conditions for progress in physics are entirely absent from superstring theory today and shows that judgments about scientific statements, which should be based on the logical consistency of argument and experimental evidence, are instead based on the eminence of those claiming to know the truth. In the face of many books from enthusiasts for string theory, this book presents the other side of the story.
Publisher: Basic Books
ISBN: 046500363X
Category : Science
Languages : en
Pages : 336
Book Description
At what point does theory depart the realm of testable hypothesis and come to resemble something like aesthetic speculation, or even theology? The legendary physicist Wolfgang Pauli had a phrase for such ideas: He would describe them as "not even wrong," meaning that they were so incomplete that they could not even be used to make predictions to compare with observations to see whether they were wrong or not. In Peter Woit's view, superstring theory is just such an idea. In Not Even Wrong , he shows that what many physicists call superstring "theory" is not a theory at all. It makes no predictions, even wrong ones, and this very lack of falsifiability is what has allowed the subject to survive and flourish. Not Even Wrong explains why the mathematical conditions for progress in physics are entirely absent from superstring theory today and shows that judgments about scientific statements, which should be based on the logical consistency of argument and experimental evidence, are instead based on the eminence of those claiming to know the truth. In the face of many books from enthusiasts for string theory, this book presents the other side of the story.
Spinor Structures in Geometry and Physics
Author: V. M. Redkov
Publisher:
ISBN: 9781634825399
Category : MATHEMATICS
Languages : en
Pages : 429
Book Description
This book is devoted to investigating the spinor structures in particle physics and in polarization optics. In fact, it consists of two parts joined by the question: Which are the manifestations of spinor structures in different branches of physics. It is based on original research. The main idea is the statement that the physical understanding of geometry should be based on physical field theories. The book contains numerous topics with the accent on field theory, quantum mechanics and polarization optics of the light, and on the spinor approach.
Publisher:
ISBN: 9781634825399
Category : MATHEMATICS
Languages : en
Pages : 429
Book Description
This book is devoted to investigating the spinor structures in particle physics and in polarization optics. In fact, it consists of two parts joined by the question: Which are the manifestations of spinor structures in different branches of physics. It is based on original research. The main idea is the statement that the physical understanding of geometry should be based on physical field theories. The book contains numerous topics with the accent on field theory, quantum mechanics and polarization optics of the light, and on the spinor approach.
Spinors in Hilbert Space
Author: Paul Dirac
Publisher: Springer Science & Business Media
ISBN: 1475700342
Category : Science
Languages : en
Pages : 97
Book Description
1. Hilbert Space The words "Hilbert space" here will always denote what math ematicians call a separable Hilbert space. It is composed of vectors each with a denumerable infinity of coordinates ql' q2' Q3, .... Usually the coordinates are considered to be complex numbers and each vector has a squared length ~rIQrI2. This squared length must converge in order that the q's may specify a Hilbert vector. Let us express qr in terms of real and imaginary parts, qr = Xr + iYr' Then the squared length is l:.r(x; + y;). The x's and y's may be looked upon as the coordinates of a vector. It is again a Hilbert vector, but it is a real Hilbert vector, with only real coordinates. Thus a complex Hilbert vector uniquely determines a real Hilbert vector. The second vector has, at first sight, twice as many coordinates as the first one. But twice a denumerable in finity is again a denumerable infinity, so the second vector has the same number of coordinates as the first. Thus a complex Hilbert vector is not a more general kind of quantity than a real one.
Publisher: Springer Science & Business Media
ISBN: 1475700342
Category : Science
Languages : en
Pages : 97
Book Description
1. Hilbert Space The words "Hilbert space" here will always denote what math ematicians call a separable Hilbert space. It is composed of vectors each with a denumerable infinity of coordinates ql' q2' Q3, .... Usually the coordinates are considered to be complex numbers and each vector has a squared length ~rIQrI2. This squared length must converge in order that the q's may specify a Hilbert vector. Let us express qr in terms of real and imaginary parts, qr = Xr + iYr' Then the squared length is l:.r(x; + y;). The x's and y's may be looked upon as the coordinates of a vector. It is again a Hilbert vector, but it is a real Hilbert vector, with only real coordinates. Thus a complex Hilbert vector uniquely determines a real Hilbert vector. The second vector has, at first sight, twice as many coordinates as the first one. But twice a denumerable in finity is again a denumerable infinity, so the second vector has the same number of coordinates as the first. Thus a complex Hilbert vector is not a more general kind of quantity than a real one.