From Finite to Infinite Dimensional Dynamical Systems

From Finite to Infinite Dimensional Dynamical Systems PDF Author: James Robinson
Publisher: Springer Science & Business Media
ISBN: 9780792369752
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
This volume contains six papers originally presented at a NATO Advanced Study Institute held in Cambridge, U.K. in 1995 on the fundamental properties of partial differential equations and modeling processes involving spatial dynamics. The contributors, from academic institutions in Europe and the U.S., discuss such topics as lattice dynamical systems, low-dimensional models of turbulence, and nonlinear dynamics of extended systems. The volume is not indexed. c. Book News Inc.

From Finite to Infinite Dimensional Dynamical Systems

From Finite to Infinite Dimensional Dynamical Systems PDF Author: James Robinson
Publisher: Springer Science & Business Media
ISBN: 9780792369752
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
This volume contains six papers originally presented at a NATO Advanced Study Institute held in Cambridge, U.K. in 1995 on the fundamental properties of partial differential equations and modeling processes involving spatial dynamics. The contributors, from academic institutions in Europe and the U.S., discuss such topics as lattice dynamical systems, low-dimensional models of turbulence, and nonlinear dynamics of extended systems. The volume is not indexed. c. Book News Inc.

Infinite-Dimensional Dynamical Systems in Mechanics and Physics

Infinite-Dimensional Dynamical Systems in Mechanics and Physics PDF Author: Roger Temam
Publisher: Springer Science & Business Media
ISBN: 1461206456
Category : Mathematics
Languages : en
Pages : 670

Get Book Here

Book Description
In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.

Infinite-Dimensional Dynamical Systems

Infinite-Dimensional Dynamical Systems PDF Author: James C. Robinson
Publisher: Cambridge University Press
ISBN: 9780521632041
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
This book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes much of the traditional elements of the subject. As such it gives a quick but directed introduction to some fundamental concepts, and by the end proceeds to current research problems. Since the subject is relatively new, this is the first book to attempt to treat these various topics in a unified and didactic way. It is intended to be suitable for first year graduate students.

Attractors for infinite-dimensional non-autonomous dynamical systems

Attractors for infinite-dimensional non-autonomous dynamical systems PDF Author: Alexandre Carvalho
Publisher: Springer Science & Business Media
ISBN: 1461445817
Category : Mathematics
Languages : en
Pages : 434

Get Book Here

Book Description
The book treats the theory of attractors for non-autonomous dynamical systems. The aim of the book is to give a coherent account of the current state of the theory, using the framework of processes to impose the minimum of restrictions on the nature of the non-autonomous dependence. The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.

Dynamics in Infinite Dimensions

Dynamics in Infinite Dimensions PDF Author: Jack K. Hale
Publisher: Springer Science & Business Media
ISBN: 0387954635
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
State-of-the-art in qualitative theory of functional differential equations; Most of the new material has never appeared in book form and some not even in papers; Second edition updated with new topics and results; Methods discussed will apply to other equations and applications

Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems

Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems PDF Author: Mariana Haragus
Publisher: Springer Science & Business Media
ISBN: 0857291122
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades. Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate students and researchers working in dynamical system theory.

Optimal Control Theory for Infinite Dimensional Systems

Optimal Control Theory for Infinite Dimensional Systems PDF Author: Xungjing Li
Publisher: Springer Science & Business Media
ISBN: 1461242606
Category : Mathematics
Languages : en
Pages : 462

Get Book Here

Book Description
Infinite dimensional systems can be used to describe many phenomena in the real world. As is well known, heat conduction, properties of elastic plastic material, fluid dynamics, diffusion-reaction processes, etc., all lie within this area. The object that we are studying (temperature, displace ment, concentration, velocity, etc.) is usually referred to as the state. We are interested in the case where the state satisfies proper differential equa tions that are derived from certain physical laws, such as Newton's law, Fourier's law etc. The space in which the state exists is called the state space, and the equation that the state satisfies is called the state equation. By an infinite dimensional system we mean one whose corresponding state space is infinite dimensional. In particular, we are interested in the case where the state equation is one of the following types: partial differential equation, functional differential equation, integro-differential equation, or abstract evolution equation. The case in which the state equation is being a stochastic differential equation is also an infinite dimensional problem, but we will not discuss such a case in this book.

Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces

Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces PDF Author: Birgit Jacob
Publisher: Springer Science & Business Media
ISBN: 3034803990
Category : Science
Languages : en
Pages : 221

Get Book Here

Book Description
This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.

Stability of Dynamical Systems

Stability of Dynamical Systems PDF Author:
Publisher: Springer Science & Business Media
ISBN: 0817644865
Category : Differentiable dynamical systems
Languages : en
Pages : 516

Get Book Here

Book Description
In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.

From Finite to Infinite Dimensional Dynamical Systems

From Finite to Infinite Dimensional Dynamical Systems PDF Author: James Robinson
Publisher: Springer Science & Business Media
ISBN: 9780792369769
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 21 August-1 September 1995