All-Digital Frequency Synthesizer in Deep-Submicron CMOS

All-Digital Frequency Synthesizer in Deep-Submicron CMOS PDF Author: Robert Bogdan Staszewski
Publisher: John Wiley & Sons
ISBN: 0470041943
Category : Technology & Engineering
Languages : en
Pages : 281

Get Book Here

Book Description
A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.

All-Digital Frequency Synthesizer in Deep-Submicron CMOS

All-Digital Frequency Synthesizer in Deep-Submicron CMOS PDF Author: Robert Bogdan Staszewski
Publisher: John Wiley & Sons
ISBN: 0470041943
Category : Technology & Engineering
Languages : en
Pages : 281

Get Book Here

Book Description
A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.

Digital PLL Frequency Synthesizers

Digital PLL Frequency Synthesizers PDF Author: Ulrich L. Rohde
Publisher: Prentice Hall
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 518

Get Book Here

Book Description


Frequency Synthesis Of All Digital Phase Locked Loop

Frequency Synthesis Of All Digital Phase Locked Loop PDF Author: Saravanakumar Subramanian
Publisher: LAP Lambert Academic Publishing
ISBN: 9783846522998
Category :
Languages : en
Pages : 52

Get Book Here

Book Description
All Digital Phase Locked Loops (ADPLLs) have become more attractive because they yield better testability, programmability, stability, and portability over different processes and the ADPLLs can reduce the system turn around time. Phase-locked loop mechanisms may be implemented as either analog or digital circuits. Both implementations use the same basic structure. The implemented ADPLL has two operation modes which are frequency acquisition mode and phase acquisition mode. In frequency acquisition mode, the ADPLL achieves a fast frequency locking via the proposed feed-forward compensation algorithm. In phase acquisition mode, the ADPLL achieves a finer phase locking.

Frequency Acquisition Techniques for Phase Locked Loops

Frequency Acquisition Techniques for Phase Locked Loops PDF Author: Daniel B. Talbot
Publisher: John Wiley & Sons
ISBN: 1118168100
Category : Technology & Engineering
Languages : en
Pages : 236

Get Book Here

Book Description
How to acquire the input frequency from an unlocked state A phase locked loop (PLL) by itself cannot become useful until it has acquired the applied signal's frequency. Often, a PLL will never reach frequency acquisition (capture) without explicit assistive circuits. Curiously, few books on PLLs treat the topic of frequency acquisition in any depth or detail. Frequency Acquisition Techniques for Phase Locked Loops offers a no-nonsense treatment that is equally useful for engineers, technicians, and managers. Since mathematical rigor for its own sake can degenerate into intellectual "rigor mortis," the author introduces readers to the basics and delivers useful information with clear language and minimal mathematics. With most of the approaches having been developed through years of experience, this completely practical guide explores methods for achieving the locked state in a variety of conditions as it examines: Performance limitations of phase/frequency detector–based phase locked loops The quadricorrelator method for both continuous and sampled modes Sawtooth ramp-and-sample phase detector and how its waveform contains frequency error information that can be extracted The benefits of a self-sweeping, self-extinguishing topology Sweep methods using quadrature mixer-based lock detection The use of digital implementations versus analog Frequency Acquisition Techniques for Phase Locked Loops is an important resource for RF/microwave engineers, in particular, circuit designers; practicing electronics engineers involved in frequency synthesis, phase locked loops, carrier or clock recovery loops, radio-frequency integrated circuit design, and aerospace electronics; and managers wanting to understand the technology of phase locked loops and frequency acquisition assistance techniques or jitter attenuating loops. Errata can be found by visiting the Book Support Site at: http://booksupport.wiley.com

Phase Lock Loops and Frequency Synthesis

Phase Lock Loops and Frequency Synthesis PDF Author: Venceslav F. Kroupa
Publisher: John Wiley & Sons
ISBN: 9780470848661
Category : Technology & Engineering
Languages : en
Pages : 344

Get Book Here

Book Description
Phase lock loop frequency synthesis finds uses in a myriad of wireless applications - from local oscillators for receivers and transmitters to high performance RF test equipment. As the security and reliability of mobile communication transmissions have gained importance, PLL and frequency synthesisers have become increasingly topical subjects. Phase Lock Loops & Frequency Synthesis examines the various components that make up the phase lock loop design, including oscillators (crystal, voltage controlled), dividers and phase detectors. Interaction amongst the various components are also discussed. Real world problems such as power supply noise, shielding, grounding and isolation are given comprehensive coverage and solved examples with MATHCAD programs are presented throughout. * Presents a comprehesive study of phase lock loops and frequency synthesis in communication systems * Written by an internationally-recognised expert in the field * Details the problem of spurious signals in PLL frequency synthesizers, a topic neglected by available competing titles * Provides detailed theorectical background coupled with practical examples of state-of-the-art device design * MATHCAD programs and simulation software to accompany the design exercises and examples This combination of thorough theoretical treatment and guidance on practical applications will appeal to mobile communication circuit designers and advanced electrical engineering students.

Design and Implementation of an All Digital Phase Locked Loop Using a Pulse Output Direct Digital Frequency Synthesizer

Design and Implementation of an All Digital Phase Locked Loop Using a Pulse Output Direct Digital Frequency Synthesizer PDF Author: Akila Gothandaraman
Publisher:
ISBN:
Category :
Languages : en
Pages : 80

Get Book Here

Book Description


Frequency Synthesizer Design Handbook

Frequency Synthesizer Design Handbook PDF Author: James A. Crawford
Publisher: Artech House Microwave Library
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book Here

Book Description
This work is aimed at practitioners wishing to gain a broader systems-based perspective of phase-locked loops; and is also suitable as a graduate text for engineering students. It provides detailed coverage of digital sampling effects in modern phase-locked frequency synthesizers from a systems perspective, and discusses all aspects of phase noise, its mathematical modelling and its impact upon different digital communication systems. Sections on building blocks for frequency synthesis using phase-locked loops, frequency synthesis using sampled-data control systems, and MASCET, are included.

Phase Locked Loops 6/e

Phase Locked Loops 6/e PDF Author: Roland E. Best
Publisher: McGraw Hill Professional
ISBN: 007159521X
Category : Technology & Engineering
Languages : en
Pages : 506

Get Book Here

Book Description
The Definitive Introduction to Phase-Locked Loops, Complete with Software for Designing Wireless Circuits! The Sixth Edition of Roland Best's classic Phase-Locked Loops has been updated to equip you with today's definitive introduction to PLL design, complete with powerful PLL design and simulation software written by the author. Filled with all the latest PLL advances, this celebrated sourcebook now includes new chapters on frequency synthesis...CAD for PLLs...mixed-signal PLLs...all-digital PLLs...and software PLLs_plus a new collection of sample communications applications. An essential tool for achieving cutting-edge PLL design, the Sixth Edition of Phase-Locked Loops features: A wealth of easy-to-use methods for designing phase-locked loops Over 200 detailed illustrations New to this edition: new chapters on frequency synthesis, including fractional-N PLL frequency synthesizers using sigma-delta modulators; CAD for PLLs, mixed-signal PLLs, all-digital PLLs, and software PLLs; new PLL communications applications, including an overview on digital modulation techniques Inside this Updated PLL Design Guide • Introduction to PLLs • Mixed-Signal PLL Components • Mixed-Signal PLL Analysis • PLL Performance in the Presence of Noise • Design Procedure for Mixed-Signal PLLs • Mixed-Signal PLL Applications • Higher Order Loops • CAD and Simulation of Mixed-Signal PLLs • All-Digital PLLs (ADPLLs) • CAD and Simulation of ADPLLs • The Software PLL (SPLL) • The PLL in Communications • State-of-the-Art Commercial PLL Integrated Circuits • Appendices: The Pull-In Process • The Laplace Transform • Digital Filter Basics • Measuring PLL Parameters

Advanced Frequency Synthesis by Phase Lock

Advanced Frequency Synthesis by Phase Lock PDF Author: William F. Egan
Publisher: John Wiley & Sons
ISBN: 0470915668
Category : Technology & Engineering
Languages : en
Pages : 324

Get Book Here

Book Description
The latest frequency synthesis techniques, including sigma-delta, Diophantine, and all-digital Sigma-delta is a frequency synthesis technique that has risen in popularity over the past decade due to its intensely digital nature and its ability to promote miniaturization. A continuation of the popular Frequency Synthesis by Phase Lock, Second Edition, this timely resource provides a broad introduction to sigma-delta by pairing practical simulation results with cutting-edge research. Advanced Frequency Synthesis by Phase Lock discusses both sigma-delta and fractional-n—the still-in-use forerunner to sigma-delta—employing Simulink® models and detailed simulations of results to promote a deeper understanding. After a brief introduction, the book shows how spurs are produced at the synthesizer output by the basic process and different methods for overcoming them. It investigates how various defects in sigma-delta synthesis contribute to spurs or noise in the synthesized signal. Synthesizer configurations are analyzed, and it is revealed how to trade off the various noise sources by choosing loop parameters. Other sigma-delta synthesis architectures are then reviewed. The Simulink simulation models that provided data for the preceding discussions are described, providing guidance in making use of such models for further exploration. Next, another method for achieving wide loop bandwidth simultaneously with fine resolution—the Diophantine Frequency Synthesizer—is introduced. Operation at extreme bandwidths is also covered, further describing the analysis of synthesizers that push their bandwidths close to the sampling-frequency limit. Lastly, the book reviews a newly important technology that is poised to become widely used in high-production consumer electronics—all-digital frequency synthesis. Detailed appendices provide in-depth discussion on various stages of development, and many related resources are available for download, including Simulink models, MATLAB® scripts, spreadsheets, and executable programs. All these features make this authoritative reference ideal for electrical engineers who want to achieve an understanding of sigma-delta frequency synthesis and an awareness of the latest developments in the field.

Advanced Frequency Synthesis by Phase Lock

Advanced Frequency Synthesis by Phase Lock PDF Author: William F. Egan
Publisher: John Wiley & Sons
ISBN: 1118171152
Category : Technology & Engineering
Languages : en
Pages : 312

Get Book Here

Book Description
The latest frequency synthesis techniques, including sigma-delta,Diophantine, and all-digital Sigma-delta is a frequency synthesis technique that has risen inpopularity over the past decade due to its intensely digital natureand its ability to promote miniaturization. A continuation of thepopular Frequency Synthesis by Phase Lock, Second Edition, thistimely resource provides a broad introduction to sigma-delta bypairing practical simulation results with cutting-edge research.Advanced Frequency Synthesis by Phase Lock discusses bothsigma-delta and fractional-n—the still-in-use forerunner tosigma-delta—employing Simulink® models and detailedsimulations of results to promote a deeper understanding. After a brief introduction, the book shows how spurs areproduced at the synthesizer output by the basic process anddifferent methods for overcoming them. It investigates how variousdefects in sigma-delta synthesis contribute to spurs or noise inthe synthesized signal. Synthesizer configurations are analyzed,and it is revealed how to trade off the various noise sources bychoosing loop parameters. Other sigma-delta synthesis architecturesare then reviewed. The Simulink simulation models that provided data for thepreceding discussions are described, providing guidance in makinguse of such models for further exploration. Next, another methodfor achieving wide loop bandwidth simultaneously with fineresolution—the Diophantine Frequency Synthesizer—isintroduced. Operation at extreme bandwidths is also covered,further describing the analysis of synthesizers that push theirbandwidths close to the sampling-frequency limit. Lastly, the bookreviews a newly important technology that is poised to becomewidely used in high-production consumerelectronics—all-digital frequency synthesis. Detailed appendices provide in-depth discussion on variousstages of development, and many related resources are available fordownload, including Simulink models, MATLAB® scripts,spreadsheets, and executable programs. All these features make thisauthoritative reference ideal for electrical engineers who want toachieve an understanding of sigma-delta frequency synthesis and anawareness of the latest developments in the field.