Author: Dumitru Baleanu
Publisher: Cambridge Scholars Publishing
ISBN: 1527552772
Category : Juvenile Nonfiction
Languages : en
Pages : 290
Book Description
This book addresses different applied problems in order to demonstrate the feasibility of fractional calculus’ use, irrespective of the type of memory kernels used, to model varieties of natural phenomena and new processes emerging in advanced technologies. In this context, the book’s focus is on modelling, adequate results, and interpretations, rather than theorems and proofs. The book includes a total of 12 chapters, representing various aspects of applied fractional modelling and covering important issues in modern technologies to provide a better understanding of applications of fractional calculus in applied modelling. The book will be a versatile source of information for undergraduate and graduate students, and for scientists involved in modelling of nonlinear and hereditary phenomena.
Fractional Dynamics in Natural Phenomena and Advanced Technologies
Author: Dumitru Baleanu
Publisher: Cambridge Scholars Publishing
ISBN: 1527552772
Category : Juvenile Nonfiction
Languages : en
Pages : 290
Book Description
This book addresses different applied problems in order to demonstrate the feasibility of fractional calculus’ use, irrespective of the type of memory kernels used, to model varieties of natural phenomena and new processes emerging in advanced technologies. In this context, the book’s focus is on modelling, adequate results, and interpretations, rather than theorems and proofs. The book includes a total of 12 chapters, representing various aspects of applied fractional modelling and covering important issues in modern technologies to provide a better understanding of applications of fractional calculus in applied modelling. The book will be a versatile source of information for undergraduate and graduate students, and for scientists involved in modelling of nonlinear and hereditary phenomena.
Publisher: Cambridge Scholars Publishing
ISBN: 1527552772
Category : Juvenile Nonfiction
Languages : en
Pages : 290
Book Description
This book addresses different applied problems in order to demonstrate the feasibility of fractional calculus’ use, irrespective of the type of memory kernels used, to model varieties of natural phenomena and new processes emerging in advanced technologies. In this context, the book’s focus is on modelling, adequate results, and interpretations, rather than theorems and proofs. The book includes a total of 12 chapters, representing various aspects of applied fractional modelling and covering important issues in modern technologies to provide a better understanding of applications of fractional calculus in applied modelling. The book will be a versatile source of information for undergraduate and graduate students, and for scientists involved in modelling of nonlinear and hereditary phenomena.
Advanced Applications of Fractional Differential Operators to Science and Technology
Author: Matouk, Ahmed Ezzat
Publisher: IGI Global
ISBN: 1799831248
Category : Mathematics
Languages : en
Pages : 401
Book Description
Fractional-order calculus dates to the 19th century but has been resurrected as a prevalent research subject due to its provision of more adequate and realistic descriptions of physical aspects within the science and engineering fields. What was once a classical form of mathematics is currently being reintroduced as a new modeling technique that engineers and scientists are finding modern uses for. There is a need for research on all facets of these fractional-order systems and studies of its potential applications. Advanced Applications of Fractional Differential Operators to Science and Technology provides emerging research exploring the theoretical and practical aspects of novel fractional modeling and related dynamical behaviors as well as its applications within the fields of physical sciences and engineering. Featuring coverage on a broad range of topics such as chaotic dynamics, ecological models, and bifurcation control, this book is ideally designed for engineering professionals, mathematicians, physicists, analysts, researchers, educators, and students seeking current research on fractional calculus and other applied mathematical modeling techniques.
Publisher: IGI Global
ISBN: 1799831248
Category : Mathematics
Languages : en
Pages : 401
Book Description
Fractional-order calculus dates to the 19th century but has been resurrected as a prevalent research subject due to its provision of more adequate and realistic descriptions of physical aspects within the science and engineering fields. What was once a classical form of mathematics is currently being reintroduced as a new modeling technique that engineers and scientists are finding modern uses for. There is a need for research on all facets of these fractional-order systems and studies of its potential applications. Advanced Applications of Fractional Differential Operators to Science and Technology provides emerging research exploring the theoretical and practical aspects of novel fractional modeling and related dynamical behaviors as well as its applications within the fields of physical sciences and engineering. Featuring coverage on a broad range of topics such as chaotic dynamics, ecological models, and bifurcation control, this book is ideally designed for engineering professionals, mathematicians, physicists, analysts, researchers, educators, and students seeking current research on fractional calculus and other applied mathematical modeling techniques.
Fractional Dynamics In Comb-like Structures
Author: Alexander Iomin
Publisher: World Scientific
ISBN: 9813273453
Category : Science
Languages : en
Pages : 246
Book Description
Random walks often provide the underlying mesoscopic mechanism for transport phenomena in physics, chemistry and biology. In particular, anomalous transport in branched structures has attracted considerable attention. Combs are simple caricatures of various types of natural branched structures that belong to the category of loopless graphs. The comb model was introduced to understand anomalous transport in percolation clusters. Comb-like models have been widely adopted to describe kinetic processes in various experimental applications in medical physics and biophysics, chemistry of polymers, semiconductors, and many other interdisciplinary applications.The authors present a random walk description of the transport in specific comb geometries, ranging from simple random walks on comb structures, which provide a geometrical explanation of anomalous diffusion, to more complex types of random walks, such as non-Markovian continuous-time random walks. The simplicity of comb models allows to perform a rigorous analysis and to obtain exact analytical results for various types of random walks and reaction-transport processes.
Publisher: World Scientific
ISBN: 9813273453
Category : Science
Languages : en
Pages : 246
Book Description
Random walks often provide the underlying mesoscopic mechanism for transport phenomena in physics, chemistry and biology. In particular, anomalous transport in branched structures has attracted considerable attention. Combs are simple caricatures of various types of natural branched structures that belong to the category of loopless graphs. The comb model was introduced to understand anomalous transport in percolation clusters. Comb-like models have been widely adopted to describe kinetic processes in various experimental applications in medical physics and biophysics, chemistry of polymers, semiconductors, and many other interdisciplinary applications.The authors present a random walk description of the transport in specific comb geometries, ranging from simple random walks on comb structures, which provide a geometrical explanation of anomalous diffusion, to more complex types of random walks, such as non-Markovian continuous-time random walks. The simplicity of comb models allows to perform a rigorous analysis and to obtain exact analytical results for various types of random walks and reaction-transport processes.
Functional Fractional Calculus
Author: Shantanu Das
Publisher: Springer Science & Business Media
ISBN: 3642205453
Category : Technology & Engineering
Languages : en
Pages : 635
Book Description
When a new extraordinary and outstanding theory is stated, it has to face criticism and skeptism, because it is beyond the usual concept. The fractional calculus though not new, was not discussed or developed for a long time, particularly for lack of its application to real life problems. It is extraordinary because it does not deal with ‘ordinary’ differential calculus. It is outstanding because it can now be applied to situations where existing theories fail to give satisfactory results. In this book not only mathematical abstractions are discussed in a lucid manner, with physical mathematical and geometrical explanations, but also several practical applications are given particularly for system identification, description and then efficient controls. The normal physical laws like, transport theory, electrodynamics, equation of motions, elasticity, viscosity, and several others of are based on ‘ordinary’ calculus. In this book these physical laws are generalized in fractional calculus contexts; taking, heterogeneity effect in transport background, the space having traps or islands, irregular distribution of charges, non-ideal spring with mass connected to a pointless-mass ball, material behaving with viscous as well as elastic properties, system relaxation with and without memory, physics of random delay in computer network; and several others; mapping the reality of nature closely. The concept of fractional and complex order differentiation and integration are elaborated mathematically, physically and geometrically with examples. The practical utility of local fractional differentiation for enhancing the character of singularity at phase transition or characterizing the irregularity measure of response function is deliberated. Practical results of viscoelastic experiments, fractional order controls experiments, design of fractional controller and practical circuit synthesis for fractional order elements are elaborated in this book. The book also maps theory of classical integer order differential equations to fractional calculus contexts, and deals in details with conflicting and demanding initialization issues, required in classical techniques. The book presents a modern approach to solve the ‘solvable’ system of fractional and other differential equations, linear, non-linear; without perturbation or transformations, but by applying physical principle of action-and-opposite-reaction, giving ‘approximately exact’ series solutions. Historically, Sir Isaac Newton and Gottfried Wihelm Leibniz independently discovered calculus in the middle of the 17th century. In recognition to this remarkable discovery, J.von Neumann remarked, “...the calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more equivocally than anything else the inception of modern mathematical analysis which is logical development, still constitute the greatest technical advance in exact thinking.” This XXI century has thus started to ‘think-exactly’ for advancement in science & technology by growing application of fractional calculus, and this century has started speaking the language which nature understands the best.
Publisher: Springer Science & Business Media
ISBN: 3642205453
Category : Technology & Engineering
Languages : en
Pages : 635
Book Description
When a new extraordinary and outstanding theory is stated, it has to face criticism and skeptism, because it is beyond the usual concept. The fractional calculus though not new, was not discussed or developed for a long time, particularly for lack of its application to real life problems. It is extraordinary because it does not deal with ‘ordinary’ differential calculus. It is outstanding because it can now be applied to situations where existing theories fail to give satisfactory results. In this book not only mathematical abstractions are discussed in a lucid manner, with physical mathematical and geometrical explanations, but also several practical applications are given particularly for system identification, description and then efficient controls. The normal physical laws like, transport theory, electrodynamics, equation of motions, elasticity, viscosity, and several others of are based on ‘ordinary’ calculus. In this book these physical laws are generalized in fractional calculus contexts; taking, heterogeneity effect in transport background, the space having traps or islands, irregular distribution of charges, non-ideal spring with mass connected to a pointless-mass ball, material behaving with viscous as well as elastic properties, system relaxation with and without memory, physics of random delay in computer network; and several others; mapping the reality of nature closely. The concept of fractional and complex order differentiation and integration are elaborated mathematically, physically and geometrically with examples. The practical utility of local fractional differentiation for enhancing the character of singularity at phase transition or characterizing the irregularity measure of response function is deliberated. Practical results of viscoelastic experiments, fractional order controls experiments, design of fractional controller and practical circuit synthesis for fractional order elements are elaborated in this book. The book also maps theory of classical integer order differential equations to fractional calculus contexts, and deals in details with conflicting and demanding initialization issues, required in classical techniques. The book presents a modern approach to solve the ‘solvable’ system of fractional and other differential equations, linear, non-linear; without perturbation or transformations, but by applying physical principle of action-and-opposite-reaction, giving ‘approximately exact’ series solutions. Historically, Sir Isaac Newton and Gottfried Wihelm Leibniz independently discovered calculus in the middle of the 17th century. In recognition to this remarkable discovery, J.von Neumann remarked, “...the calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more equivocally than anything else the inception of modern mathematical analysis which is logical development, still constitute the greatest technical advance in exact thinking.” This XXI century has thus started to ‘think-exactly’ for advancement in science & technology by growing application of fractional calculus, and this century has started speaking the language which nature understands the best.
Fractional Calculus in Medical and Health Science
Author: Devendra Kumar
Publisher: CRC Press
ISBN: 1000081818
Category : Mathematics
Languages : en
Pages : 265
Book Description
This book covers applications of fractional calculus used for medical and health science. It offers a collection of research articles built into chapters on classical and modern dynamical systems formulated by fractional differential equations describing human diseases and how to control them. The mathematical results included in the book will be helpful to mathematicians and doctors by enabling them to explain real-life problems accurately. The book will also offer case studies of real-life situations with an emphasis on describing the mathematical results and showing how to apply the results to medical and health science, and at the same time highlighting modeling strategies. The book will be useful to graduate level students, educators and researchers interested in mathematics and medical science.
Publisher: CRC Press
ISBN: 1000081818
Category : Mathematics
Languages : en
Pages : 265
Book Description
This book covers applications of fractional calculus used for medical and health science. It offers a collection of research articles built into chapters on classical and modern dynamical systems formulated by fractional differential equations describing human diseases and how to control them. The mathematical results included in the book will be helpful to mathematicians and doctors by enabling them to explain real-life problems accurately. The book will also offer case studies of real-life situations with an emphasis on describing the mathematical results and showing how to apply the results to medical and health science, and at the same time highlighting modeling strategies. The book will be useful to graduate level students, educators and researchers interested in mathematics and medical science.
Mathematical Economics
Author: Vasily E. Tarasov
Publisher: MDPI
ISBN: 303936118X
Category : Business & Economics
Languages : en
Pages : 278
Book Description
This book is devoted to the application of fractional calculus in economics to describe processes with memory and non-locality. Fractional calculus is a branch of mathematics that studies the properties of differential and integral operators that are characterized by real or complex orders. Fractional calculus methods are powerful tools for describing the processes and systems with memory and nonlocality. Recently, fractional integro-differential equations have been used to describe a wide class of economical processes with power law memory and spatial nonlocality. Generalizations of basic economic concepts and notions the economic processes with memory were proposed. New mathematical models with continuous time are proposed to describe economic dynamics with long memory. This book is a collection of articles reflecting the latest mathematical and conceptual developments in mathematical economics with memory and non-locality based on applications of fractional calculus.
Publisher: MDPI
ISBN: 303936118X
Category : Business & Economics
Languages : en
Pages : 278
Book Description
This book is devoted to the application of fractional calculus in economics to describe processes with memory and non-locality. Fractional calculus is a branch of mathematics that studies the properties of differential and integral operators that are characterized by real or complex orders. Fractional calculus methods are powerful tools for describing the processes and systems with memory and nonlocality. Recently, fractional integro-differential equations have been used to describe a wide class of economical processes with power law memory and spatial nonlocality. Generalizations of basic economic concepts and notions the economic processes with memory were proposed. New mathematical models with continuous time are proposed to describe economic dynamics with long memory. This book is a collection of articles reflecting the latest mathematical and conceptual developments in mathematical economics with memory and non-locality based on applications of fractional calculus.
Solution and Characteristic Analysis of Fractional-Order Chaotic Systems
Author: Kehui Sun
Publisher: Springer Nature
ISBN: 9811932735
Category : Science
Languages : en
Pages : 254
Book Description
This book highlights the solution algorithms and characteristic analysis methods of fractional-order chaotic systems. Fractal dimensions exist broadly in the study of nature and the development of science and technology. Fractional calculus has become a hot research area in nonlinear science. Fractional-order chaotic systems are an important part of fractional calculus. The book discusses the numerical solution algorithms and characteristic analysis of fractional-order chaotic systems and introduces the techniques to implement the systems with circuits. To facilitate a quick grasp, the authors present examples from their years of work in the appendix. Intended for graduate students and researchers interested in chaotic systems, the book helps one to build a theoretical and experimental foundation for the application of fractional-order chaotic systems.
Publisher: Springer Nature
ISBN: 9811932735
Category : Science
Languages : en
Pages : 254
Book Description
This book highlights the solution algorithms and characteristic analysis methods of fractional-order chaotic systems. Fractal dimensions exist broadly in the study of nature and the development of science and technology. Fractional calculus has become a hot research area in nonlinear science. Fractional-order chaotic systems are an important part of fractional calculus. The book discusses the numerical solution algorithms and characteristic analysis of fractional-order chaotic systems and introduces the techniques to implement the systems with circuits. To facilitate a quick grasp, the authors present examples from their years of work in the appendix. Intended for graduate students and researchers interested in chaotic systems, the book helps one to build a theoretical and experimental foundation for the application of fractional-order chaotic systems.
Earth and Mind
Author: Cathryn A. Manduca
Publisher: Geological Society of America
ISBN: 0813724139
Category : Science
Languages : en
Pages : 198
Book Description
Publisher: Geological Society of America
ISBN: 0813724139
Category : Science
Languages : en
Pages : 198
Book Description
Advanced Petroleum Reservoir Simulation
Author: M. R. Islam
Publisher: John Wiley & Sons
ISBN: 1119038715
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
This second edition of the original volume adds significant new innovations for revolutionizing the processes and methods used in petroleum reservoir simulations. With the advent of shale drilling, hydraulic fracturing, and underbalanced drilling has come a virtual renaissance of scientific methodologies in the oil and gas industry. New ways of thinking are being pioneered, and Dr. Islam and his team have, for years now, been at the forefront of these important changes. This book clarifies the underlying mathematics and physics behind reservoir simulation and makes it easy to have a range of simulation results along with their respective probability. This makes the risk analysis based on knowledge rather than guess work. The book offers by far the strongest tool for engineers and managers to back up reservoir simulation predictions with real science. The book adds transparency and ease to the process of reservoir simulation in way never witnessed before. Finally, No other book provides readers complete access to the 3D, 3-phase reservoir simulation software that is available with this text. A must-have for any reservoir engineer or petroleum engineer working upstream, whether in exploration, drilling, or production, this text is also a valuable textbook for advanced students and graduate students in petroleum or chemical engineering departments.
Publisher: John Wiley & Sons
ISBN: 1119038715
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
This second edition of the original volume adds significant new innovations for revolutionizing the processes and methods used in petroleum reservoir simulations. With the advent of shale drilling, hydraulic fracturing, and underbalanced drilling has come a virtual renaissance of scientific methodologies in the oil and gas industry. New ways of thinking are being pioneered, and Dr. Islam and his team have, for years now, been at the forefront of these important changes. This book clarifies the underlying mathematics and physics behind reservoir simulation and makes it easy to have a range of simulation results along with their respective probability. This makes the risk analysis based on knowledge rather than guess work. The book offers by far the strongest tool for engineers and managers to back up reservoir simulation predictions with real science. The book adds transparency and ease to the process of reservoir simulation in way never witnessed before. Finally, No other book provides readers complete access to the 3D, 3-phase reservoir simulation software that is available with this text. A must-have for any reservoir engineer or petroleum engineer working upstream, whether in exploration, drilling, or production, this text is also a valuable textbook for advanced students and graduate students in petroleum or chemical engineering departments.
Entropy in Dynamic Systems
Author: Jan Awrejcewicz
Publisher: MDPI
ISBN: 3039216163
Category : Science
Languages : en
Pages : 172
Book Description
In order to measure and quantify the complex behavior of real-world systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and non-uniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineering-oriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and anti-synchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed.
Publisher: MDPI
ISBN: 3039216163
Category : Science
Languages : en
Pages : 172
Book Description
In order to measure and quantify the complex behavior of real-world systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and non-uniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineering-oriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and anti-synchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed.