Fourier Analysis in Convex Geometry

Fourier Analysis in Convex Geometry PDF Author: Alexander Koldobsky
Publisher: American Mathematical Soc.
ISBN: 1470419521
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
The study of the geometry of convex bodies based on information about sections and projections of these bodies has important applications in many areas of mathematics and science. In this book, a new Fourier analysis approach is discussed. The idea is to express certain geometric properties of bodies in terms of Fourier analysis and to use harmonic analysis methods to solve geometric problems. One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the -dimensional volume of hyperplane sections of the -dimensional unit cube (it is for each ). Another is the Busemann-Petty problem: if and are two convex origin-symmetric -dimensional bodies and the -dimensional volume of each central hyperplane section of is less than the -dimensional volume of the corresponding section of , is it true that the -dimensional volume of is less than the volume of ? (The answer is positive for and negative for .) The book is suitable for graduate students and researchers interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.

Fourier Analysis in Convex Geometry

Fourier Analysis in Convex Geometry PDF Author: Alexander Koldobsky
Publisher: American Mathematical Soc.
ISBN: 1470419521
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
The study of the geometry of convex bodies based on information about sections and projections of these bodies has important applications in many areas of mathematics and science. In this book, a new Fourier analysis approach is discussed. The idea is to express certain geometric properties of bodies in terms of Fourier analysis and to use harmonic analysis methods to solve geometric problems. One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the -dimensional volume of hyperplane sections of the -dimensional unit cube (it is for each ). Another is the Busemann-Petty problem: if and are two convex origin-symmetric -dimensional bodies and the -dimensional volume of each central hyperplane section of is less than the -dimensional volume of the corresponding section of , is it true that the -dimensional volume of is less than the volume of ? (The answer is positive for and negative for .) The book is suitable for graduate students and researchers interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.

Fourier Analysis and Convexity

Fourier Analysis and Convexity PDF Author: Luca Brandolini
Publisher: Springer Science & Business Media
ISBN: 9780817632632
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description
Explores relationship between Fourier Analysis, convex geometry, and related areas; in the past, study of this relationship has led to important mathematical advances Presents new results and applications to diverse fields such as geometry, number theory, and analysis Contributors are leading experts in their respective fields Will be of interest to both pure and applied mathematicians

Fourier Analysis and Convexity

Fourier Analysis and Convexity PDF Author: Luca Brandolini
Publisher: Springer Science & Business Media
ISBN: 0817681728
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
Explores relationship between Fourier Analysis, convex geometry, and related areas; in the past, study of this relationship has led to important mathematical advances Presents new results and applications to diverse fields such as geometry, number theory, and analysis Contributors are leading experts in their respective fields Will be of interest to both pure and applied mathematicians

Classical Fourier Analysis

Classical Fourier Analysis PDF Author: Loukas Grafakos
Publisher: Springer Science & Business Media
ISBN: 0387094326
Category : Mathematics
Languages : en
Pages : 494

Get Book Here

Book Description
The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: “Grafakos’s book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises.” - Ken Ross, MAA Online

Geometric Applications of Fourier Series and Spherical Harmonics

Geometric Applications of Fourier Series and Spherical Harmonics PDF Author: H. Groemer
Publisher: Cambridge University Press
ISBN: 0521473187
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
This book provides a comprehensive presentation of geometric results, primarily from the theory of convex sets, that have been proved by the use of Fourier series or spherical harmonics. An important feature of the book is that all necessary tools from the classical theory of spherical harmonics are presented with full proofs. These tools are used to prove geometric inequalities, stability results, uniqueness results for projections and intersections by hyperplanes or half-spaces and characterisations of rotors in convex polytopes. Again, full proofs are given. To make the treatment as self-contained as possible the book begins with background material in analysis and the geometry of convex sets. This treatise will be welcomed both as an introduction to the subject and as a reference book for pure and applied mathematics.

Symplectic Geometry and Fourier Analysis

Symplectic Geometry and Fourier Analysis PDF Author: Nolan R. Wallach
Publisher: Courier Dover Publications
ISBN: 0486816893
Category : Mathematics
Languages : en
Pages : 275

Get Book Here

Book Description
Suitable for graduate students in mathematics, this monograph covers differential and symplectic geometry, homogeneous symplectic manifolds, Fourier analysis, metaplectic representation, quantization, Kirillov theory. Includes Appendix on Quantum Mechanics by Robert Hermann. 1977 edition.

Decay of the Fourier Transform

Decay of the Fourier Transform PDF Author: Alex Iosevich
Publisher: Springer
ISBN: 3034806256
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
The Plancherel formula says that the L^2 norm of the function is equal to the L^2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L^2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L^2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.​

The Interface Between Convex Geometry and Harmonic Analysis

The Interface Between Convex Geometry and Harmonic Analysis PDF Author: Alexander Koldobsky
Publisher: American Mathematical Soc.
ISBN: 9780821883358
Category : Mathematics
Languages : en
Pages : 128

Get Book Here

Book Description
"The book is written in the form of lectures accessible to graduate students. This approach allows the reader to clearly see the main ideas behind the method, rather than to dwell on technical difficulties. The book also contains discussions of the most recent advances in the subject. The first section of each lecture is a snapshot of that lecture. By reading each of these sections first, novices can gain an overview of the subject, then return to the full text for more details."--BOOK JACKET.

Handbook of Fourier Analysis & Its Applications

Handbook of Fourier Analysis & Its Applications PDF Author: Robert J Marks II
Publisher: Oxford University Press
ISBN: 0198044305
Category : Technology & Engineering
Languages : en
Pages : 799

Get Book Here

Book Description
Fourier analysis has many scientific applications - in physics, number theory, combinatorics, signal processing, probability theory, statistics, option pricing, cryptography, acoustics, oceanography, optics and diffraction, geometry, and other areas. In signal processing and related fields, Fourier analysis is typically thought of as decomposing a signal into its component frequencies and their amplitudes. This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal processing and related multidimensional transform theory, and quantum physics to elementary deterministic finance and even the foundations of western music theory. As a definitive text on Fourier Analysis, Handbook of Fourier Analysis and Its Applications is meant to replace several less comprehensive volumes on the subject, such as Processing of Multifimensional Signals by Alexandre Smirnov, Modern Sampling Theory by John J. Benedetto and Paulo J.S.G. Ferreira, Vector Space Projections by Henry Stark and Yongyi Yang and Fourier Analysis and Imaging by Ronald N. Bracewell. In addition to being primarily used as a professional handbook, it includes sample problems and their solutions at the end of each section and thus serves as a textbook for advanced undergraduate students and beginning graduate students in courses such as: Multidimensional Signals and Systems, Signal Analysis, Introduction to Shannon Sampling and Interpolation Theory, Random Variables and Stochastic Processes, and Signals and Linear Systems.

Harmonic Analysis and Convexity

Harmonic Analysis and Convexity PDF Author: Alexander Koldobsky
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110775387
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
In recent years, the interaction between harmonic analysis and convex geometry has increased which has resulted in solutions to several long-standing problems. This collection is based on the topics discussed during the Research Semester on Harmonic Analysis and Convexity at the Institute for Computational and Experimental Research in Mathematics in Providence RI in Fall 2022. The volume brings together experts working in related fields to report on the status of major problems in the area including the isomorphic Busemann-Petty and slicing problems for arbitrary measures, extremal problems for Fourier extension and extremal problems for classical singular integrals of martingale type, among others.