Four Colors Suffice

Four Colors Suffice PDF Author: Robin J. Wilson
Publisher: Princeton University Press
ISBN: 9780691120232
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
On October 23, 1852, Professor Augustus De Morgan wrote a letter to a colleague, unaware that he was launching one of the most famous mathematical conundrums in history--one that would confound thousands of puzzlers for more than a century. This is the amazing story of how the "map problem" was solved. The problem posed in the letter came from a former student: What is the least possible number of colors needed to fill in any map (real or invented) so that neighboring counties are always colored differently? This deceptively simple question was of minimal interest to cartographers, who saw little need to limit how many colors they used. But the problem set off a frenzy among professional mathematicians and amateur problem solvers, among them Lewis Carroll, an astronomer, a botanist, an obsessive golfer, the Bishop of London, a man who set his watch only once a year, a California traffic cop, and a bridegroom who spent his honeymoon coloring maps. In their pursuit of the solution, mathematicians painted maps on doughnuts and horseshoes and played with patterned soccer balls and the great rhombicuboctahedron. It would be more than one hundred years (and countless colored maps) later before the result was finally established. Even then, difficult questions remained, and the intricate solution--which involved no fewer than 1,200 hours of computer time--was greeted with as much dismay as enthusiasm. Providing a clear and elegant explanation of the problem and the proof, Robin Wilson tells how a seemingly innocuous question baffled great minds and stimulated exciting mathematics with far-flung applications. This is the entertaining story of those who failed to prove, and those who ultimately did prove, that four colors do indeed suffice to color any map.

Four Colors Suffice

Four Colors Suffice PDF Author: Robin J. Wilson
Publisher: Princeton University Press
ISBN: 9780691120232
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
On October 23, 1852, Professor Augustus De Morgan wrote a letter to a colleague, unaware that he was launching one of the most famous mathematical conundrums in history--one that would confound thousands of puzzlers for more than a century. This is the amazing story of how the "map problem" was solved. The problem posed in the letter came from a former student: What is the least possible number of colors needed to fill in any map (real or invented) so that neighboring counties are always colored differently? This deceptively simple question was of minimal interest to cartographers, who saw little need to limit how many colors they used. But the problem set off a frenzy among professional mathematicians and amateur problem solvers, among them Lewis Carroll, an astronomer, a botanist, an obsessive golfer, the Bishop of London, a man who set his watch only once a year, a California traffic cop, and a bridegroom who spent his honeymoon coloring maps. In their pursuit of the solution, mathematicians painted maps on doughnuts and horseshoes and played with patterned soccer balls and the great rhombicuboctahedron. It would be more than one hundred years (and countless colored maps) later before the result was finally established. Even then, difficult questions remained, and the intricate solution--which involved no fewer than 1,200 hours of computer time--was greeted with as much dismay as enthusiasm. Providing a clear and elegant explanation of the problem and the proof, Robin Wilson tells how a seemingly innocuous question baffled great minds and stimulated exciting mathematics with far-flung applications. This is the entertaining story of those who failed to prove, and those who ultimately did prove, that four colors do indeed suffice to color any map.

Four Colours Suffice

Four Colours Suffice PDF Author: Robin J. Wilson
Publisher:
ISBN:
Category : History
Languages : en
Pages : 292

Get Book Here

Book Description
The four-colour problem was one of the most famous and controversial conundrums ever known, and stumped thousands of puzzlers for over a century. It sounded simple- what is the least number of colours needed to fill in any map, so that neighbouring countries are always coloured differently? However, it would take over a hundred years for amateur problem-solvers and mathematicians alike to answer the question first posed by Francis Guthrie in 1852. And, even when a solution was finally found using computers, debate raged over whether this technology could ever provide the proof that traditional pen-and-paper calculations could. This is the gripping story of the race to solve the riddle - a tale of dedicated puzzlers, mind-boggling maps, human ingenuity and the great rhombicuboctahedron

The Four-Color Theorem

The Four-Color Theorem PDF Author: Rudolf Fritsch
Publisher: Springer Science & Business Media
ISBN: 1461217202
Category : Mathematics
Languages : en
Pages : 269

Get Book Here

Book Description
This book discusses a famous problem that helped to define the field now known as topology: What is the minimum number of colors required to print a map so that no two adjoining countries have the same color? This problem remained unsolved until the 1950s, when it was finally cracked using a computer. This book discusses the history and mathematics of the problem, as well as the philosophical debate which ensued, regarding the validity of computer generated proofs.

The Four-color Problem

The Four-color Problem PDF Author: Thomas L. Saaty
Publisher:
ISBN: 9780486650920
Category : Mathematics
Languages : en
Pages : 217

Get Book Here

Book Description


Combinatorics: Ancient & Modern

Combinatorics: Ancient & Modern PDF Author: Robin Wilson
Publisher: OUP Oxford
ISBN: 0191630624
Category : Mathematics
Languages : en
Pages : 392

Get Book Here

Book Description
Who first presented Pascal's triangle? (It was not Pascal.) Who first presented Hamiltonian graphs? (It was not Hamilton.) Who first presented Steiner triple systems? (It was not Steiner.) The history of mathematics is a well-studied and vibrant area of research, with books and scholarly articles published on various aspects of the subject. Yet, the history of combinatorics seems to have been largely overlooked. This book goes some way to redress this and serves two main purposes: 1) it constitutes the first book-length survey of the history of combinatorics; and 2) it assembles, for the first time in a single source, researches on the history of combinatorics that would otherwise be inaccessible to the general reader. Individual chapters have been contributed by sixteen experts. The book opens with an introduction by Donald E. Knuth to two thousand years of combinatorics. This is followed by seven chapters on early combinatorics, leading from Indian and Chinese writings on permutations to late-Renaissance publications on the arithmetical triangle. The next seven chapters trace the subsequent story, from Euler's contributions to such wide-ranging topics as partitions, polyhedra, and latin squares to the 20th century advances in combinatorial set theory, enumeration, and graph theory. The book concludes with some combinatorial reflections by the distinguished combinatorialist, Peter J. Cameron. This book is not expected to be read from cover to cover, although it can be. Rather, it aims to serve as a valuable resource to a variety of audiences. Combinatorialists with little or no knowledge about the development of their subject will find the historical treatment stimulating. A historian of mathematics will view its assorted surveys as an encouragement for further research in combinatorics. The more general reader will discover an introduction to a fascinating and too little known subject that continues to stimulate and inspire the work of scholars today.

Graph Theory in America

Graph Theory in America PDF Author: Robin Wilson
Publisher: Princeton University Press
ISBN: 0691194025
Category : Computers
Languages : en
Pages : 320

Get Book Here

Book Description
How a new mathematical field grew and matured in America Graph Theory in America focuses on the development of graph theory in North America from 1876 to 1976. At the beginning of this period, James Joseph Sylvester, perhaps the finest mathematician in the English-speaking world, took up his appointment as the first professor of mathematics at the Johns Hopkins University, where his inaugural lecture outlined connections between graph theory, algebra, and chemistry—shortly after, he introduced the word graph in our modern sense. A hundred years later, in 1976, graph theory witnessed the solution of the long-standing four color problem by Kenneth Appel and Wolfgang Haken of the University of Illinois. Tracing graph theory’s trajectory across its first century, this book looks at influential figures in the field, both familiar and less known. Whereas many of the featured mathematicians spent their entire careers working on problems in graph theory, a few such as Hassler Whitney started there and then moved to work in other areas. Others, such as C. S. Peirce, Oswald Veblen, and George Birkhoff, made excursions into graph theory while continuing their focus elsewhere. Between the main chapters, the book provides short contextual interludes, describing how the American university system developed and how graph theory was progressing in Europe. Brief summaries of specific publications that influenced the subject’s development are also included. Graph Theory in America tells how a remarkable area of mathematics landed on American soil, took root, and flourished.

Every Planar Map is Four Colorable

Every Planar Map is Four Colorable PDF Author: Kenneth I. Appel
Publisher: American Mathematical Soc.
ISBN: 0821851039
Category : Mathematics
Languages : en
Pages : 760

Get Book Here

Book Description
In this volume, the authors present their 1972 proof of the celebrated Four Color Theorem in a detailed but self-contained exposition accessible to a general mathematical audience. An emended version of the authors' proof of the theorem, the book contains the full text of the supplements and checklists, which originally appeared on microfiche. The thiry-page introduction, intended for nonspecialists, provides some historical background of the theorem and details of the authors' proof. In addition, the authors have added an appendix which treats in much greater detail the argument for situations in which reducible configurations are immersed rather than embedded in triangulations. This result leads to a proof that four coloring can be accomplished in polynomial time.

The Four-Color Problem

The Four-Color Problem PDF Author:
Publisher: Academic Press
ISBN: 0080873391
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description
The Four-Color Problem

Topics in Topological Graph Theory

Topics in Topological Graph Theory PDF Author: Lowell W. Beineke
Publisher: Cambridge University Press
ISBN: 1139643681
Category : Mathematics
Languages : en
Pages : 387

Get Book Here

Book Description
The use of topological ideas to explore various aspects of graph theory, and vice versa, is a fruitful area of research. There are links with other areas of mathematics, such as design theory and geometry, and increasingly with such areas as computer networks where symmetry is an important feature. Other books cover portions of the material here, but there are no other books with such a wide scope. This book contains fifteen expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory and the topology of surfaces. Each chapter concludes with an extensive list of references.

The Great Mathematical Problems

The Great Mathematical Problems PDF Author: Ian Stewart
Publisher: Profile Books
ISBN: 1847653510
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
There are some mathematical problems whose significance goes beyond the ordinary - like Fermat's Last Theorem or Goldbach's Conjecture - they are the enigmas which define mathematics. The Great Mathematical Problems explains why these problems exist, why they matter, what drives mathematicians to incredible lengths to solve them and where they stand in the context of mathematics and science as a whole. It contains solved problems - like the Poincaré Conjecture, cracked by the eccentric genius Grigori Perelman, who refused academic honours and a million-dollar prize for his work, and ones which, like the Riemann Hypothesis, remain baffling after centuries. Stewart is the guide to this mysterious and exciting world, showing how modern mathematicians constantly rise to the challenges set by their predecessors, as the great mathematical problems of the past succumb to the new techniques and ideas of the present.