Foundations of the Calculus

Foundations of the Calculus PDF Author: Henry F. De Baggis
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description

Foundations of the Calculus

Foundations of the Calculus PDF Author: Henry F. De Baggis
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description


Foundations of Differential Calculus

Foundations of Differential Calculus PDF Author: Euler
Publisher: Springer Science & Business Media
ISBN: 0387226451
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description
The positive response to the publication of Blanton's English translations of Euler's "Introduction to Analysis of the Infinite" confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's "Foundations of Differential Calculus" as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community.

Foundation Calculus

Foundation Calculus PDF Author: Pragnesh Gajjar
Publisher: Bloomsbury Publishing
ISBN: 1352006537
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
This textbook teaches the fundamentals of calculus, keeping points clear, succinct and focused, with plenty of diagrams and practice but relatively few words. It assumes a very basic knowledge but revises the key prerequisites before moving on. Definitions are highlighted for easy understanding and reference, and worked examples illustrate the explanations. Chapters are interwoven with exercises, whilst each chapter also ends with a comprehensive set of exercises, with answers in the back of the book. Introductory paragraphs describe the real-world application of each topic, and also include briefly where relevant any interesting historical facts about the development of the mathematical subject. This text is intended for undergraduate students in engineering taking a course in calculus. It works for the Foundation and 1st year levels. It has a companion volume Foundation Algebra.

Foundations of Infinitesimal Calculus

Foundations of Infinitesimal Calculus PDF Author: H. Jerome Keisler
Publisher: Prindle Weber & Schmidt
ISBN: 9780871502155
Category : Mathematics
Languages : en
Pages : 214

Get Book Here

Book Description


Cultural Foundations of Mathematics

Cultural Foundations of Mathematics PDF Author: C. K. Raju
Publisher: Pearson Education India
ISBN: 9788131708712
Category : Calculus
Languages : en
Pages : 536

Get Book Here

Book Description
The Volume Examines, In Depth, The Implications Of Indian History And Philosophy For Contemporary Mathematics And Science. The Conclusions Challenge Current Formal Mathematics And Its Basis In The Western Dogma That Deduction Is Infallible (Or That It Is Less Fallible Than Induction). The Development Of The Calculus In India, Over A Thousand Years, Is Exhaustively Documented In This Volume, Along With Novel Insights, And Is Related To The Key Sources Of Wealth-Monsoon-Dependent Agriculture And Navigation Required For Overseas Trade - And The Corresponding Requirement Of Timekeeping. Refecting The Usual Double Standard Of Evidence Used To Construct Eurocentric History, A Single, New Standard Of Evidence For Transmissions Is Proposed. Using This, It Is Pointed Out That Jesuits In Cochin, Following The Toledo Model Of Translation, Had Long-Term Opportunity To Transmit Indian Calculus Texts To Europe. The European Navigational Problem Of Determining Latitude, Longitude, And Loxodromes, And The 1582 Gregorian Calendar-Reform, Provided Ample Motivation. The Mathematics In These Earlier Indian Texts Suddenly Starts Appearing In European Works From The Mid-16Th Century Onwards, Providing Compelling Circumstantial Evidence. While The Calculus In India Had Valid Pramana, This Differed From Western Notions Of Proof, And The Indian (Algorismus) Notion Of Number Differed From The European (Abacus) Notion. Hence, Like Their Earlier Difficulties With The Algorismus, Europeans Had Difficulties In Understanding The Calculus, Which, Like Computer Technology, Enhanced The Ability To Calculate, Albeit In A Way Regarded As Epistemologically Insecure. Present-Day Difficulties In Learning Mathematics Are Related, Via Phylogeny Is Ontogeny , To These Historical Difficulties In Assimilating Imported Mathematics. An Appendix Takes Up Further Contemporary Implications Of The New Philosophy Of Mathematics For The Extension Of The Calculus, Which Is Needed To Handle The Infinities Arising In The Study Of Shock Waves And The Renormalization Problem Of Quantum Field Theory.

Foundations of Mathematical Analysis

Foundations of Mathematical Analysis PDF Author: Richard Johnsonbaugh
Publisher: Courier Corporation
ISBN: 0486134776
Category : Mathematics
Languages : en
Pages : 450

Get Book Here

Book Description
Definitive look at modern analysis, with views of applications to statistics, numerical analysis, Fourier series, differential equations, mathematical analysis, and functional analysis. More than 750 exercises; some hints and solutions. 1981 edition.

Foundations of Mathematics

Foundations of Mathematics PDF Author: Philip Brown
Publisher: Mercury Learning and Information
ISBN: 1944534415
Category : Mathematics
Languages : en
Pages : 663

Get Book Here

Book Description
Foundations of Mathematics offers the university student or interested reader a unique reference book by covering the basics of algebra, trigonometry, geometry, and calculus. There are many instances in the book to demonstrate the interplay and interconnectedness of these topics. The book presents definitions and examples throughout for clear, easy learning. Numerous exercises are included at the ends of the chapters, and readers are encouraged to complete all of them as an essential part of working through the book. It offers a unique experience for readers to understand different areas of mathematics in one clear, concise text. Instructors’ resources are available upon adoption. Features: •Covers the basics of algebra, trigonometry, geometry, and calculus •Includes all of the mathematics needed to learn calculus •Demonstrates the interplay and interconnectedness of these topics •Uses numerous examples and exercises to reinforce concepts

Mathematical Foundations of the Calculus of Probability

Mathematical Foundations of the Calculus of Probability PDF Author: Jacques Neveu
Publisher:
ISBN:
Category : Measure theory
Languages : en
Pages : 250

Get Book Here

Book Description


Foundations of Applied Mathematics, Volume I

Foundations of Applied Mathematics, Volume I PDF Author: Jeffrey Humpherys
Publisher: SIAM
ISBN: 1611974895
Category : Mathematics
Languages : en
Pages : 710

Get Book Here

Book Description
This book provides the essential foundations of both linear and nonlinear analysis necessary for understanding and working in twenty-first century applied and computational mathematics. In addition to the standard topics, this text includes several key concepts of modern applied mathematical analysis that should be, but are not typically, included in advanced undergraduate and beginning graduate mathematics curricula. This material is the introductory foundation upon which algorithm analysis, optimization, probability, statistics, differential equations, machine learning, and control theory are built. When used in concert with the free supplemental lab materials, this text teaches students both the theory and the computational practice of modern mathematical analysis. Foundations of Applied Mathematics, Volume 1: Mathematical Analysis includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, Daniell?Lebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?

Foundations of Constructive Mathematics

Foundations of Constructive Mathematics PDF Author: M.J. Beeson
Publisher: Springer Science & Business Media
ISBN: 3642689523
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
This book is about some recent work in a subject usually considered part of "logic" and the" foundations of mathematics", but also having close connec tions with philosophy and computer science. Namely, the creation and study of "formal systems for constructive mathematics". The general organization of the book is described in the" User's Manual" which follows this introduction, and the contents of the book are described in more detail in the introductions to Part One, Part Two, Part Three, and Part Four. This introduction has a different purpose; it is intended to provide the reader with a general view of the subject. This requires, to begin with, an elucidation of both the concepts mentioned in the phrase, "formal systems for constructive mathematics". "Con structive mathematics" refers to mathematics in which, when you prove that l a thing exists (having certain desired properties) you show how to find it. Proof by contradiction is the most common way of proving something exists without showing how to find it - one assumes that nothing exists with the desired properties, and derives a contradiction. It was only in the last two decades of the nineteenth century that mathematicians began to exploit this method of proof in ways that nobody had previously done; that was partly made possible by the creation and development of set theory by Georg Cantor and Richard Dedekind.