Author: Robert Lee Moore
Publisher: American Mathematical Soc.
ISBN: 0821810138
Category : Mathematics
Languages : en
Pages : 434
Book Description
Foundations of Point Set Theory
Author: Robert Lee Moore
Publisher: American Mathematical Soc.
ISBN: 0821810138
Category : Mathematics
Languages : en
Pages : 434
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821810138
Category : Mathematics
Languages : en
Pages : 434
Book Description
Conceptions of Set and the Foundations of Mathematics
Author: Luca Incurvati
Publisher: Cambridge University Press
ISBN: 1108497829
Category : History
Languages : en
Pages : 255
Book Description
Presents a detailed and critical examination of the available conceptions of set and proposes a novel version.
Publisher: Cambridge University Press
ISBN: 1108497829
Category : History
Languages : en
Pages : 255
Book Description
Presents a detailed and critical examination of the available conceptions of set and proposes a novel version.
Quine, New Foundations, and the Philosophy of Set Theory
Author: Sean Morris
Publisher: Cambridge University Press
ISBN: 110715250X
Category : History
Languages : en
Pages : 221
Book Description
Provides an accessible mathematical and philosophical account of Quine's set theory, New Foundations.
Publisher: Cambridge University Press
ISBN: 110715250X
Category : History
Languages : en
Pages : 221
Book Description
Provides an accessible mathematical and philosophical account of Quine's set theory, New Foundations.
Set Theory
Author: Abhijit Dasgupta
Publisher: Springer Science & Business Media
ISBN: 1461488540
Category : Mathematics
Languages : en
Pages : 434
Book Description
What is a number? What is infinity? What is continuity? What is order? Answers to these fundamental questions obtained by late nineteenth-century mathematicians such as Dedekind and Cantor gave birth to set theory. This textbook presents classical set theory in an intuitive but concrete manner. To allow flexibility of topic selection in courses, the book is organized into four relatively independent parts with distinct mathematical flavors. Part I begins with the Dedekind–Peano axioms and ends with the construction of the real numbers. The core Cantor–Dedekind theory of cardinals, orders, and ordinals appears in Part II. Part III focuses on the real continuum. Finally, foundational issues and formal axioms are introduced in Part IV. Each part ends with a postscript chapter discussing topics beyond the scope of the main text, ranging from philosophical remarks to glimpses into landmark results of modern set theory such as the resolution of Lusin's problems on projective sets using determinacy of infinite games and large cardinals. Separating the metamathematical issues into an optional fourth part at the end makes this textbook suitable for students interested in any field of mathematics, not just for those planning to specialize in logic or foundations. There is enough material in the text for a year-long course at the upper-undergraduate level. For shorter one-semester or one-quarter courses, a variety of arrangements of topics are possible. The book will be a useful resource for both experts working in a relevant or adjacent area and beginners wanting to learn set theory via self-study.
Publisher: Springer Science & Business Media
ISBN: 1461488540
Category : Mathematics
Languages : en
Pages : 434
Book Description
What is a number? What is infinity? What is continuity? What is order? Answers to these fundamental questions obtained by late nineteenth-century mathematicians such as Dedekind and Cantor gave birth to set theory. This textbook presents classical set theory in an intuitive but concrete manner. To allow flexibility of topic selection in courses, the book is organized into four relatively independent parts with distinct mathematical flavors. Part I begins with the Dedekind–Peano axioms and ends with the construction of the real numbers. The core Cantor–Dedekind theory of cardinals, orders, and ordinals appears in Part II. Part III focuses on the real continuum. Finally, foundational issues and formal axioms are introduced in Part IV. Each part ends with a postscript chapter discussing topics beyond the scope of the main text, ranging from philosophical remarks to glimpses into landmark results of modern set theory such as the resolution of Lusin's problems on projective sets using determinacy of infinite games and large cardinals. Separating the metamathematical issues into an optional fourth part at the end makes this textbook suitable for students interested in any field of mathematics, not just for those planning to specialize in logic or foundations. There is enough material in the text for a year-long course at the upper-undergraduate level. For shorter one-semester or one-quarter courses, a variety of arrangements of topics are possible. The book will be a useful resource for both experts working in a relevant or adjacent area and beginners wanting to learn set theory via self-study.
Sets for Mathematics
Author: F. William Lawvere
Publisher: Cambridge University Press
ISBN: 9780521010603
Category : Mathematics
Languages : en
Pages : 280
Book Description
In this book, first published in 2003, categorical algebra is used to build a foundation for the study of geometry, analysis, and algebra.
Publisher: Cambridge University Press
ISBN: 9780521010603
Category : Mathematics
Languages : en
Pages : 280
Book Description
In this book, first published in 2003, categorical algebra is used to build a foundation for the study of geometry, analysis, and algebra.
New Foundations for Physical Geometry
Author: Tim Maudlin
Publisher:
ISBN: 0198701306
Category : Mathematics
Languages : en
Pages : 374
Book Description
Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.
Publisher:
ISBN: 0198701306
Category : Mathematics
Languages : en
Pages : 374
Book Description
Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.
Labyrinth of Thought
Author: Jose Ferreiros
Publisher: Springer Science & Business Media
ISBN: 9783764357498
Category : Mathematics
Languages : en
Pages : 472
Book Description
"José Ferreirós has written a magisterial account of the history of set theory which is panoramic, balanced, and engaging. Not only does this book synthesize much previous work and provide fresh insights and points of view, but it also features a major innovation, a full-fledged treatment of the emergence of the set-theoretic approach in mathematics from the early nineteenth century. This takes up Part One of the book. Part Two analyzes the crucial developments in the last quarter of the nineteenth century, above all the work of Cantor, but also Dedekind and the interaction between the two. Lastly, Part Three details the development of set theory up to 1950, taking account of foundational questions and the emergence of the modern axiomatization." (Bulletin of Symbolic Logic)
Publisher: Springer Science & Business Media
ISBN: 9783764357498
Category : Mathematics
Languages : en
Pages : 472
Book Description
"José Ferreirós has written a magisterial account of the history of set theory which is panoramic, balanced, and engaging. Not only does this book synthesize much previous work and provide fresh insights and points of view, but it also features a major innovation, a full-fledged treatment of the emergence of the set-theoretic approach in mathematics from the early nineteenth century. This takes up Part One of the book. Part Two analyzes the crucial developments in the last quarter of the nineteenth century, above all the work of Cantor, but also Dedekind and the interaction between the two. Lastly, Part Three details the development of set theory up to 1950, taking account of foundational questions and the emergence of the modern axiomatization." (Bulletin of Symbolic Logic)
Axiomatic Set Theory
Author: Patrick Suppes
Publisher: Courier Corporation
ISBN: 0486136876
Category : Mathematics
Languages : en
Pages : 290
Book Description
Geared toward upper-level undergraduates and graduate students, this treatment examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, more. 1960 edition.
Publisher: Courier Corporation
ISBN: 0486136876
Category : Mathematics
Languages : en
Pages : 290
Book Description
Geared toward upper-level undergraduates and graduate students, this treatment examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, more. 1960 edition.
Basic Set Theory
Author: Azriel Levy
Publisher: Courier Corporation
ISBN: 0486150739
Category : Mathematics
Languages : en
Pages : 418
Book Description
Although this book deals with basic set theory (in general, it stops short of areas where model-theoretic methods are used) on a rather advanced level, it does it at an unhurried pace. This enables the author to pay close attention to interesting and important aspects of the topic that might otherwise be skipped over. Written for upper-level undergraduate and graduate students, the book is divided into two parts. The first covers pure set theory, including the basic notions, order and well-foundedness, cardinal numbers, the ordinals, and the axiom of choice and some of its consequences. The second part deals with applications and advanced topics, among them a review of point set topology, the real spaces, Boolean algebras, and infinite combinatorics and large cardinals. A helpful appendix deals with eliminability and conservation theorems, while numerous exercises supply additional information on the subject matter and help students test their grasp of the material. 1979 edition. 20 figures.
Publisher: Courier Corporation
ISBN: 0486150739
Category : Mathematics
Languages : en
Pages : 418
Book Description
Although this book deals with basic set theory (in general, it stops short of areas where model-theoretic methods are used) on a rather advanced level, it does it at an unhurried pace. This enables the author to pay close attention to interesting and important aspects of the topic that might otherwise be skipped over. Written for upper-level undergraduate and graduate students, the book is divided into two parts. The first covers pure set theory, including the basic notions, order and well-foundedness, cardinal numbers, the ordinals, and the axiom of choice and some of its consequences. The second part deals with applications and advanced topics, among them a review of point set topology, the real spaces, Boolean algebras, and infinite combinatorics and large cardinals. A helpful appendix deals with eliminability and conservation theorems, while numerous exercises supply additional information on the subject matter and help students test their grasp of the material. 1979 edition. 20 figures.
A Book of Set Theory
Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486497089
Category : Mathematics
Languages : en
Pages : 259
Book Description
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
Publisher: Courier Corporation
ISBN: 0486497089
Category : Mathematics
Languages : en
Pages : 259
Book Description
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--