Foundations of Genetic Algorithms 1993 (FOGA 2)

Foundations of Genetic Algorithms 1993 (FOGA 2) PDF Author: FOGA
Publisher: Morgan Kaufmann
ISBN: 0080948324
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
Foundations of Genetic Algorithms, Volume 2 provides insight of theoretical work in genetic algorithms. This book provides a general understanding of a canonical genetic algorithm. Organized into six parts encompassing 19 chapters, this volume begins with an overview of genetic algorithms in the broader adaptive systems context. This text then reviews some results in mathematical genetics that use probability distributions to characterize the effects of recombination on multiple loci in the absence of selection. Other chapters examine the static building block hypothesis (SBBH), which is the underlying assumption used to define deception. This book discusses as well the effect of noise on the quality of convergence of genetic algorithms. The final chapter deals with the primary goal in machine learning and artificial intelligence, which is to dynamically and automatically decompose problems into simpler problems to facilitate their solution. This book is a valuable resource for theorists and genetic algorithm researchers.

Foundations of Genetic Algorithms 1993 (FOGA 2)

Foundations of Genetic Algorithms 1993 (FOGA 2) PDF Author: FOGA
Publisher: Morgan Kaufmann
ISBN: 0080948324
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
Foundations of Genetic Algorithms, Volume 2 provides insight of theoretical work in genetic algorithms. This book provides a general understanding of a canonical genetic algorithm. Organized into six parts encompassing 19 chapters, this volume begins with an overview of genetic algorithms in the broader adaptive systems context. This text then reviews some results in mathematical genetics that use probability distributions to characterize the effects of recombination on multiple loci in the absence of selection. Other chapters examine the static building block hypothesis (SBBH), which is the underlying assumption used to define deception. This book discusses as well the effect of noise on the quality of convergence of genetic algorithms. The final chapter deals with the primary goal in machine learning and artificial intelligence, which is to dynamically and automatically decompose problems into simpler problems to facilitate their solution. This book is a valuable resource for theorists and genetic algorithm researchers.

Foundations of Genetic Algorithms 1995 (FOGA 3)

Foundations of Genetic Algorithms 1995 (FOGA 3) PDF Author: FOGA
Publisher: Morgan Kaufmann
ISBN: 1483295028
Category : Computers
Languages : en
Pages : 345

Get Book Here

Book Description
Foundations of Genetic Algorithms 1995 (FOGA 3)

Foundations of Genetic Algorithms

Foundations of Genetic Algorithms PDF Author: Alden H. Wright
Publisher: Springer
ISBN: 3540320350
Category : Computers
Languages : en
Pages : 325

Get Book Here

Book Description
The8thWorkshopontheFoundationsofGeneticAlgorithms,FOGA-8,washeld at the University of Aizu in Aizu-Wakamatsu City, Japan, January 5–9, 2005. This series of workshops was initiated in 1990 to encourage further research on the theoretical aspects of genetic algorithms, and the workshops have been held biennially ever since. The papers presented at these workshops are revised, edited and published as volumes during the year following each workshop. This series of (now eight) volumes provides an outstanding source of reference for the theoretical work in this ?eld. At the same time this series of volumes provides a clear picture of how the theoretical research has grown and matured along with the ?eld to encompass many evolutionary computation paradigms including evolution strategies (ES), evolutionary programming (EP), and genetic programming (GP), as well as the continuing growthininteractionswith other ?elds suchas mathematics,physics, and biology. Atraditionoftheseworkshopsisorganizetheminsuchawayastoencourage lots of interaction and discussion by restricting the number of papers presented and the number of attendees, and by holding the workshop in a relaxed and informal setting. This year’s workshop was no exception. Thirty-two researchers met for 3 days to present and discuss 16 papers. The local organizer was Lothar Schmitt who, together with help and support from his university, provided the workshop facilities. Aftertheworkshopwasover,theauthorsweregiventheopportunitytorevise their papers based on the feedback they received from the other participants.

Foundations of Genetic Algorithms 3

Foundations of Genetic Algorithms 3 PDF Author: L. Darrell Whitley
Publisher:
ISBN:
Category : Combinatorial optimization
Languages : en
Pages : 352

Get Book Here

Book Description


Foundations of Genetic Algorithms 2001 (FOGA 6)

Foundations of Genetic Algorithms 2001 (FOGA 6) PDF Author: Worth Martin
Publisher: Elsevier
ISBN: 0080506879
Category : Computers
Languages : en
Pages : 351

Get Book Here

Book Description
Foundations of Genetic Algorithms, Volume 6 is the latest in a series of books that records the prestigious Foundations of Genetic Algorithms Workshops, sponsored and organised by the International Society of Genetic Algorithms specifically to address theoretical publications on genetic algorithms and classifier systems. Genetic algorithms are one of the more successful machine learning methods. Based on the metaphor of natural evolution, a genetic algorithm searches the available information in any given task and seeks the optimum solution by replacing weaker populations with stronger ones. - Includes research from academia, government laboratories, and industry - Contains high calibre papers which have been extensively reviewed - Continues the tradition of presenting not only current theoretical work but also issues that could shape future research in the field - Ideal for researchers in machine learning, specifically those involved with evolutionary computation

The Practical Handbook of Genetic Algorithms

The Practical Handbook of Genetic Algorithms PDF Author: Lance D. Chambers
Publisher: CRC Press
ISBN: 0429525567
Category : Mathematics
Languages : en
Pages : 498

Get Book Here

Book Description
The mathematics employed by genetic algorithms (GAs)are among the most exciting discoveries of the last few decades. But what exactly is a genetic algorithm? A genetic algorithm is a problem-solving method that uses genetics as its model of problem solving. It applies the rules of reproduction, gene crossover, and mutation to pseudo-organism

Parallel Problem Solving from Nature - PPSN III

Parallel Problem Solving from Nature - PPSN III PDF Author: Yuval Davidor
Publisher: Springer Science & Business Media
ISBN: 9783540584841
Category : Computers
Languages : en
Pages : 664

Get Book Here

Book Description
The challenges in ecosystem science encompass a broadening and strengthening of interdisciplinary ties, the transfer of knowledge of the ecosystem across scales, and the inclusion of anthropogenic impacts and human behavior into ecosystem, landscape, and regional models. The volume addresses these points within the context of studies in major ecosystem types viewed as the building blocks of central European landscapes. The research is evaluated to increase the understanding of the processes in order to unite ecosystem science with resource management. The comparison embraces coastal lowland forests, associated wetlands and lakes, agricultural land use, and montane and alpine forests. Techniques for upscaling focus on process modelling at stand and landscape scales and the use of remote sensing for landscape-level model parameterization and testing. The case studies demonstrate ways for ecosystem scientists, managers, and social scientists to cooperate.

Artificial Neural Nets and Genetic Algorithms

Artificial Neural Nets and Genetic Algorithms PDF Author: David W. Pearson
Publisher: Springer Science & Business Media
ISBN: 3709175356
Category : Computers
Languages : en
Pages : 542

Get Book Here

Book Description
Artificial neural networks and genetic algorithms both are areas of research which have their origins in mathematical models constructed in order to gain understanding of important natural processes. By focussing on the process models rather than the processes themselves, significant new computational techniques have evolved which have found application in a large number of diverse fields. This diversity is reflected in the topics which are subjects of the contributions to this volume. There are contributions reporting successful applications of the technology to the solution of industrial/commercial problems. This may well reflect the maturity of the technology, notably in the sense that 'real' users of modelling/prediction techniques are prepared to accept neural networks as a valid paradigm. Theoretical issues also receive attention, notably in connection with the radial basis function neural network. Contributions in the field of genetic algorithms reflect the wide range of current applications, including, for example, portfolio selection, filter design, frequency assignment, tuning of nonlinear PID controllers. These techniques are also used extensively for combinatorial optimisation problems.

Foundations of Genetic Algorithms

Foundations of Genetic Algorithms PDF Author: Christopher R. Stephens
Publisher: Springer Science & Business Media
ISBN: 3540734791
Category : Computers
Languages : en
Pages : 220

Get Book Here

Book Description
This book constitutes the thoroughly refereed post-proceedings of the 9th Workshop on the Foundations of Genetic Algorithms, FOGA 2007, held in Mexico City, Mexico in January 2007. The 11 revised full papers presented were carefully reviewed and selected during two rounds of reviewing and improvement from 22 submissions. The papers address all current topics in the field of theoretical evolutionary computation including evolution strategies, evolutionary programming, and genetic programming, and also depict the continuing growth in interactions with other fields such as mathematics, physics, and biology.

Adaptive Learning of Polynomial Networks

Adaptive Learning of Polynomial Networks PDF Author: Nikolay Nikolaev
Publisher: Springer Science & Business Media
ISBN: 0387312404
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
This book delivers theoretical and practical knowledge for developing algorithms that infer linear and non-linear multivariate models, providing a methodology for inductive learning of polynomial neural network models (PNN) from data. The text emphasizes an organized model identification process by which to discover models that generalize and predict well. The book further facilitates the discovery of polynomial models for time-series prediction.