Author: Alexandru Buium
Publisher: American Mathematical Soc.
ISBN: 147043623X
Category : Mathematics
Languages : en
Pages : 357
Book Description
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Foundations of Arithmetic Differential Geometry
Author: Alexandru Buium
Publisher: American Mathematical Soc.
ISBN: 147043623X
Category : Mathematics
Languages : en
Pages : 357
Book Description
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Publisher: American Mathematical Soc.
ISBN: 147043623X
Category : Mathematics
Languages : en
Pages : 357
Book Description
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Foundations of Arithmetic Differential Geometry
Author: Alexandru Buium
Publisher: American Mathematical Society
ISBN: 1470475774
Category : Mathematics
Languages : en
Pages : 357
Book Description
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Publisher: American Mathematical Society
ISBN: 1470475774
Category : Mathematics
Languages : en
Pages : 357
Book Description
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Arithmetic Differential Equations
Author: Alexandru Buium
Publisher: American Mathematical Soc.
ISBN: 0821838628
Category : Mathematics
Languages : en
Pages : 346
Book Description
For most of the book the only prerequisites are the basic facts of algebraic geometry and number theory."--BOOK JACKET.
Publisher: American Mathematical Soc.
ISBN: 0821838628
Category : Mathematics
Languages : en
Pages : 346
Book Description
For most of the book the only prerequisites are the basic facts of algebraic geometry and number theory."--BOOK JACKET.
Frege, Dedekind, and Peano on the Foundations of Arithmetic (Routledge Revivals)
Author: Donald Gillies
Publisher: Routledge
ISBN: 113672107X
Category : Mathematics
Languages : en
Pages : 115
Book Description
First published in 1982, this reissue contains a critical exposition of the views of Frege, Dedekind and Peano on the foundations of arithmetic. The last quarter of the 19th century witnessed a remarkable growth of interest in the foundations of arithmetic. This work analyses both the reasons for this growth of interest within both mathematics and philosophy and the ways in which this study of the foundations of arithmetic led to new insights in philosophy and striking advances in logic. This historical-critical study provides an excellent introduction to the problems of the philosophy of mathematics - problems which have wide implications for philosophy as a whole. This reissue will appeal to students of both mathematics and philosophy who wish to improve their knowledge of logic.
Publisher: Routledge
ISBN: 113672107X
Category : Mathematics
Languages : en
Pages : 115
Book Description
First published in 1982, this reissue contains a critical exposition of the views of Frege, Dedekind and Peano on the foundations of arithmetic. The last quarter of the 19th century witnessed a remarkable growth of interest in the foundations of arithmetic. This work analyses both the reasons for this growth of interest within both mathematics and philosophy and the ways in which this study of the foundations of arithmetic led to new insights in philosophy and striking advances in logic. This historical-critical study provides an excellent introduction to the problems of the philosophy of mathematics - problems which have wide implications for philosophy as a whole. This reissue will appeal to students of both mathematics and philosophy who wish to improve their knowledge of logic.
Differential Geometry
Author: Clifford Taubes
Publisher: Oxford University Press
ISBN: 0199605882
Category : Mathematics
Languages : en
Pages : 313
Book Description
Bundles, connections, metrics and curvature are the lingua franca of modern differential geometry and theoretical physics. Supplying graduate students in mathematics or theoretical physics with the fundamentals of these objects, this book would suit a one-semester course on the subject of bundles and the associated geometry.
Publisher: Oxford University Press
ISBN: 0199605882
Category : Mathematics
Languages : en
Pages : 313
Book Description
Bundles, connections, metrics and curvature are the lingua franca of modern differential geometry and theoretical physics. Supplying graduate students in mathematics or theoretical physics with the fundamentals of these objects, this book would suit a one-semester course on the subject of bundles and the associated geometry.
Trilogy Of Numbers And Arithmetic - Book 1: History Of Numbers And Arithmetic: An Information Perspective
Author: Mark Burgin
Publisher: World Scientific
ISBN: 9811236852
Category : Mathematics
Languages : en
Pages : 370
Book Description
The book is the first in the trilogy which will bring you to the fascinating world of numbers and operations with them. Numbers provide information about myriads of things. Together with operations, numbers constitute arithmetic forming in basic intellectual instruments of theoretical and practical activity of people and offering powerful tools for representation, acquisition, transmission, processing, storage, and management of information about the world.The history of numbers and arithmetic is the topic of a variety of books and at the same time, it is extensively presented in many books on the history of mathematics. However, all of them, at best, bring the reader to the end of the 19th century without including the developments in these areas in the 20th century and later. Besides, such books consider and describe only the most popular classes of numbers, such as whole numbers or real numbers. At the same time, a diversity of new classes of numbers and arithmetic were introduced in the 20th century.This book looks into the chronicle of numbers and arithmetic from ancient times all the way to 21st century. It also includes the developments in these areas in the 20th century and later. A unique aspect of this book is its information orientation of the exposition of the history of numbers and arithmetic.
Publisher: World Scientific
ISBN: 9811236852
Category : Mathematics
Languages : en
Pages : 370
Book Description
The book is the first in the trilogy which will bring you to the fascinating world of numbers and operations with them. Numbers provide information about myriads of things. Together with operations, numbers constitute arithmetic forming in basic intellectual instruments of theoretical and practical activity of people and offering powerful tools for representation, acquisition, transmission, processing, storage, and management of information about the world.The history of numbers and arithmetic is the topic of a variety of books and at the same time, it is extensively presented in many books on the history of mathematics. However, all of them, at best, bring the reader to the end of the 19th century without including the developments in these areas in the 20th century and later. Besides, such books consider and describe only the most popular classes of numbers, such as whole numbers or real numbers. At the same time, a diversity of new classes of numbers and arithmetic were introduced in the 20th century.This book looks into the chronicle of numbers and arithmetic from ancient times all the way to 21st century. It also includes the developments in these areas in the 20th century and later. A unique aspect of this book is its information orientation of the exposition of the history of numbers and arithmetic.
New Foundations in Mathematics
Author: Garret Sobczyk
Publisher: Springer Science & Business Media
ISBN: 0817683852
Category : Mathematics
Languages : en
Pages : 373
Book Description
The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.
Publisher: Springer Science & Business Media
ISBN: 0817683852
Category : Mathematics
Languages : en
Pages : 373
Book Description
The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.
Integrable Systems and Algebraic Geometry
Author: Ron Donagi
Publisher: Cambridge University Press
ISBN: 110871577X
Category : Mathematics
Languages : en
Pages : 537
Book Description
A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.
Publisher: Cambridge University Press
ISBN: 110871577X
Category : Mathematics
Languages : en
Pages : 537
Book Description
A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.
Introduction to Arithmetic Groups
Author: Armand Borel
Publisher: American Mathematical Soc.
ISBN: 1470452316
Category : Education
Languages : en
Pages : 133
Book Description
Fifty years after it made the transition from mimeographed lecture notes to a published book, Armand Borel's Introduction aux groupes arithmétiques continues to be very important for the theory of arithmetic groups. In particular, Chapter III of the book remains the standard reference for fundamental results on reduction theory, which is crucial in the study of discrete subgroups of Lie groups and the corresponding homogeneous spaces. The review of the original French version in Mathematical Reviews observes that “the style is concise and the proofs (in later sections) are often demanding of the reader.” To make the translation more approachable, numerous footnotes provide helpful comments.
Publisher: American Mathematical Soc.
ISBN: 1470452316
Category : Education
Languages : en
Pages : 133
Book Description
Fifty years after it made the transition from mimeographed lecture notes to a published book, Armand Borel's Introduction aux groupes arithmétiques continues to be very important for the theory of arithmetic groups. In particular, Chapter III of the book remains the standard reference for fundamental results on reduction theory, which is crucial in the study of discrete subgroups of Lie groups and the corresponding homogeneous spaces. The review of the original French version in Mathematical Reviews observes that “the style is concise and the proofs (in later sections) are often demanding of the reader.” To make the translation more approachable, numerous footnotes provide helpful comments.
Integrable Systems and Algebraic Geometry: Volume 2
Author: Ron Donagi
Publisher: Cambridge University Press
ISBN: 1108805337
Category : Mathematics
Languages : en
Pages : 537
Book Description
Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. The articles in this second volume discuss areas related to algebraic geometry, emphasizing the connections of this central subject to integrable systems, arithmetic geometry, Riemann surfaces, coding theory and lattice theory.
Publisher: Cambridge University Press
ISBN: 1108805337
Category : Mathematics
Languages : en
Pages : 537
Book Description
Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. The articles in this second volume discuss areas related to algebraic geometry, emphasizing the connections of this central subject to integrable systems, arithmetic geometry, Riemann surfaces, coding theory and lattice theory.