Author: Mahendra Sahai
Publisher: Springer Science & Business Media
ISBN: 3709101409
Category : Science
Languages : en
Pages : 279
Book Description
Lignans, by convention, are a group of natural products that are formed by linking two phenylpropanoid units (C C units) by oxidative coupling. Most importantly, in 6 3 a lignan, two (C C units) are bound through the central carbon of their side chains, 6 3 0 i. e. the 8 and 8 positions (1, 2). The occurrence of C C -dimers, linked at sites other 6 3 0 than the 8–8 positions, is also known and these compounds have been termed neolignans (3, 4). As these two groups of compounds have close structural as well as biosynthetic relationships, they are often associated together and incorporated under the general term “lignan” (5). The diverse structural categorization of true lignans and of a few neolignans is presented in Fig. 1. Through the years, several review articles or books covering different facets of lignans, including their ch- istry (6, 7), biogenesis (8), synthesis (9), and biological activities (10) have been published. Enduring research for the investigation of secondary metabolites of plants has evidenced some compounds that are biogenetically related to true lignans or neolignans but bear some features not discerned in conventional lignans. These compounds or groups of compounds have been termed as “non-conventional lignans”, and include coumarinolignans, ?avonolignans, and stilbenolignans. The non-conventional lignans, like the conventional ones, have two C C units linked 6 3 together but have additional structural features to place them also under the category of coumarins, ?avonoids, or stilbenes.
Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, Vol. 93
Author: Mahendra Sahai
Publisher: Springer Science & Business Media
ISBN: 3709101409
Category : Science
Languages : en
Pages : 279
Book Description
Lignans, by convention, are a group of natural products that are formed by linking two phenylpropanoid units (C C units) by oxidative coupling. Most importantly, in 6 3 a lignan, two (C C units) are bound through the central carbon of their side chains, 6 3 0 i. e. the 8 and 8 positions (1, 2). The occurrence of C C -dimers, linked at sites other 6 3 0 than the 8–8 positions, is also known and these compounds have been termed neolignans (3, 4). As these two groups of compounds have close structural as well as biosynthetic relationships, they are often associated together and incorporated under the general term “lignan” (5). The diverse structural categorization of true lignans and of a few neolignans is presented in Fig. 1. Through the years, several review articles or books covering different facets of lignans, including their ch- istry (6, 7), biogenesis (8), synthesis (9), and biological activities (10) have been published. Enduring research for the investigation of secondary metabolites of plants has evidenced some compounds that are biogenetically related to true lignans or neolignans but bear some features not discerned in conventional lignans. These compounds or groups of compounds have been termed as “non-conventional lignans”, and include coumarinolignans, ?avonolignans, and stilbenolignans. The non-conventional lignans, like the conventional ones, have two C C units linked 6 3 together but have additional structural features to place them also under the category of coumarins, ?avonoids, or stilbenes.
Publisher: Springer Science & Business Media
ISBN: 3709101409
Category : Science
Languages : en
Pages : 279
Book Description
Lignans, by convention, are a group of natural products that are formed by linking two phenylpropanoid units (C C units) by oxidative coupling. Most importantly, in 6 3 a lignan, two (C C units) are bound through the central carbon of their side chains, 6 3 0 i. e. the 8 and 8 positions (1, 2). The occurrence of C C -dimers, linked at sites other 6 3 0 than the 8–8 positions, is also known and these compounds have been termed neolignans (3, 4). As these two groups of compounds have close structural as well as biosynthetic relationships, they are often associated together and incorporated under the general term “lignan” (5). The diverse structural categorization of true lignans and of a few neolignans is presented in Fig. 1. Through the years, several review articles or books covering different facets of lignans, including their ch- istry (6, 7), biogenesis (8), synthesis (9), and biological activities (10) have been published. Enduring research for the investigation of secondary metabolites of plants has evidenced some compounds that are biogenetically related to true lignans or neolignans but bear some features not discerned in conventional lignans. These compounds or groups of compounds have been termed as “non-conventional lignans”, and include coumarinolignans, ?avonolignans, and stilbenolignans. The non-conventional lignans, like the conventional ones, have two C C units linked 6 3 together but have additional structural features to place them also under the category of coumarins, ?avonoids, or stilbenes.
Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, Vol. 92
Author: A. Douglas Kinghorn
Publisher: Springer Science & Business Media
ISBN: 3211996613
Category : Science
Languages : en
Pages : 185
Book Description
Resin glycosides are part of a very extensive family of secondary metabolites known as glycolipids or lipo-oligosaccharides and are constituents of complex resins (glycoresins) (1) unique to the morning glory family, Convolvulaceae (2). These active principles are responsible for the drastic purgative action of all the important Convolvulaceous species used in traditional medicine throughout the world since ancient times. Several commercial purgative crude drugs can be prepared from the roots of different species of Mexican morning glories. Their incorporation as therapeutic agents in Europe is an outstanding example of the assimilation of botanical drugs from the Americas as substitutes for traditional Old World remedies (3). Even though phytochemical investigations on the constituents of these drugs were initiated during the second half of the nineteenth century, the structure of their active ingredients still remains poorly known for some examples of these purgative roots. During the last two decades, the higher resolution c- abilities of modern analytical isolation techniques used in conjunction with pow- ful spectroscopic methods have facilitated the elucidation of the active principles of these relevant herbal products. This chapter describes the ethnobotanical information associated with the p- gative morning glory species and how traditional usages were instrumental in plant selection for chemical studies. The advantages and limitations of available analy- cal techniques for the isolation, puri?cation, and structure characterization of the individual constituents of these complex glycoconjugates are also discussed.
Publisher: Springer Science & Business Media
ISBN: 3211996613
Category : Science
Languages : en
Pages : 185
Book Description
Resin glycosides are part of a very extensive family of secondary metabolites known as glycolipids or lipo-oligosaccharides and are constituents of complex resins (glycoresins) (1) unique to the morning glory family, Convolvulaceae (2). These active principles are responsible for the drastic purgative action of all the important Convolvulaceous species used in traditional medicine throughout the world since ancient times. Several commercial purgative crude drugs can be prepared from the roots of different species of Mexican morning glories. Their incorporation as therapeutic agents in Europe is an outstanding example of the assimilation of botanical drugs from the Americas as substitutes for traditional Old World remedies (3). Even though phytochemical investigations on the constituents of these drugs were initiated during the second half of the nineteenth century, the structure of their active ingredients still remains poorly known for some examples of these purgative roots. During the last two decades, the higher resolution c- abilities of modern analytical isolation techniques used in conjunction with pow- ful spectroscopic methods have facilitated the elucidation of the active principles of these relevant herbal products. This chapter describes the ethnobotanical information associated with the p- gative morning glory species and how traditional usages were instrumental in plant selection for chemical studies. The advantages and limitations of available analy- cal techniques for the isolation, puri?cation, and structure characterization of the individual constituents of these complex glycoconjugates are also discussed.
Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products 85
Author:
Publisher: Springer Science & Business Media
ISBN: 3709160510
Category : Science
Languages : en
Pages : 270
Book Description
The volumes of this classic series, now referred to simply as "Zechmeister” after its founder, L. Zechmeister, have appeared under the Springer Imprint ever since the series’ inauguration in 1938. The volumes contain contributions on various topics related to the origin, distribution, chemistry, synthesis, biochemistry, function or use of various classes of naturally occurring substances ranging from small molecules to biopolymers. Each contribution is written by a recognized authority in his field and provides a comprehensive and up-to-date review of the topic in question. Addressed to biologists, technologists, and chemists alike, the series can be used by the expert as a source of information and literature citations and by the non-expert as a means of orientation in a rapidly developing discipline.
Publisher: Springer Science & Business Media
ISBN: 3709160510
Category : Science
Languages : en
Pages : 270
Book Description
The volumes of this classic series, now referred to simply as "Zechmeister” after its founder, L. Zechmeister, have appeared under the Springer Imprint ever since the series’ inauguration in 1938. The volumes contain contributions on various topics related to the origin, distribution, chemistry, synthesis, biochemistry, function or use of various classes of naturally occurring substances ranging from small molecules to biopolymers. Each contribution is written by a recognized authority in his field and provides a comprehensive and up-to-date review of the topic in question. Addressed to biologists, technologists, and chemists alike, the series can be used by the expert as a source of information and literature citations and by the non-expert as a means of orientation in a rapidly developing discipline.
Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products
Author: T. Fukai
Publisher: Springer Science & Business Media
ISBN: 9783211830192
Category : Medical
Languages : en
Pages : 180
Book Description
The Leguminosae is an economically important family in the Dicotyledonae with many cultivated species, e. g., beans and peas. The family also contains many well-known medicinal plants. It is composed of 17,000 or more species that constitute nearly one twelfth of the world's flowering plants (1). Traditionally the family has been divided into three subfamilies, Caesalpinioideae, Mimosoideae and Papilionoi deae, which are sometimes recognized as separate families Caesalpinia ceae, Mimosaceae and Papilionaceae. The International Code of Botanical Nomenclature permits alternative nomenclatures, the family names being replaced by Fabaceae, Fabales and Faboideae, and this usage will be common (2). Licorice (liquorice, kanzoh in Japanese, gancao in Chinese) is the name applied to the roots and stolons of some Glycyrrhiza species (Fabaceae) and has been used by human beings for at least 4000 years. The earliest written reference to the use of licorice is contained in the Codex Hammurabi dating from 2100 B. C., and the subsequent history in the West has been described in the earlier reviews (3-6). In the Far East, references to the effectiveness of licorice are contained in the "Shen Nong Ben Cao Jing," the first Chinese dispensatory whose original anonymous volumes probably appeared by the end of the third century (7, 8)."
Publisher: Springer Science & Business Media
ISBN: 9783211830192
Category : Medical
Languages : en
Pages : 180
Book Description
The Leguminosae is an economically important family in the Dicotyledonae with many cultivated species, e. g., beans and peas. The family also contains many well-known medicinal plants. It is composed of 17,000 or more species that constitute nearly one twelfth of the world's flowering plants (1). Traditionally the family has been divided into three subfamilies, Caesalpinioideae, Mimosoideae and Papilionoi deae, which are sometimes recognized as separate families Caesalpinia ceae, Mimosaceae and Papilionaceae. The International Code of Botanical Nomenclature permits alternative nomenclatures, the family names being replaced by Fabaceae, Fabales and Faboideae, and this usage will be common (2). Licorice (liquorice, kanzoh in Japanese, gancao in Chinese) is the name applied to the roots and stolons of some Glycyrrhiza species (Fabaceae) and has been used by human beings for at least 4000 years. The earliest written reference to the use of licorice is contained in the Codex Hammurabi dating from 2100 B. C., and the subsequent history in the West has been described in the earlier reviews (3-6). In the Far East, references to the effectiveness of licorice are contained in the "Shen Nong Ben Cao Jing," the first Chinese dispensatory whose original anonymous volumes probably appeared by the end of the third century (7, 8)."
Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products
Author:
Publisher: Springer Science & Business Media
ISBN: 3709162270
Category : Science
Languages : en
Pages : 301
Book Description
The volumes of this classic series, now referred to simply as "Zechmeister" after its founder, L. Zechmeister, have appeared under the Springer Imprint ever since the series' inauguration in 1938. The volumes contain contributions on various topics related to the origin, distribution, chemistry, synthesis, biochemistry, function or use of various classes of naturally occurring substances ranging from small molecules to biopolymers. Each contribution is written by a recognized authority in his field and provides a comprehensive and up-to-date review of the topic in question. Addressed to biologists, technologists, and chemists alike, the series can be used by the expert as a source of information and literature citations and by the non-expert as a means of orientation in a rapidly developing discipline.
Publisher: Springer Science & Business Media
ISBN: 3709162270
Category : Science
Languages : en
Pages : 301
Book Description
The volumes of this classic series, now referred to simply as "Zechmeister" after its founder, L. Zechmeister, have appeared under the Springer Imprint ever since the series' inauguration in 1938. The volumes contain contributions on various topics related to the origin, distribution, chemistry, synthesis, biochemistry, function or use of various classes of naturally occurring substances ranging from small molecules to biopolymers. Each contribution is written by a recognized authority in his field and provides a comprehensive and up-to-date review of the topic in question. Addressed to biologists, technologists, and chemists alike, the series can be used by the expert as a source of information and literature citations and by the non-expert as a means of orientation in a rapidly developing discipline.
Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products
Author: Mahendra Sahai
Publisher: Springer
ISBN: 9783709111079
Category : Science
Languages : en
Pages : 264
Book Description
Lignans, by convention, are a group of natural products that are formed by linking two phenylpropanoid units (C C units) by oxidative coupling. Most importantly, in 6 3 a lignan, two (C C units) are bound through the central carbon of their side chains, 6 3 0 i. e. the 8 and 8 positions (1, 2). The occurrence of C C -dimers, linked at sites other 6 3 0 than the 8–8 positions, is also known and these compounds have been termed neolignans (3, 4). As these two groups of compounds have close structural as well as biosynthetic relationships, they are often associated together and incorporated under the general term “lignan” (5). The diverse structural categorization of true lignans and of a few neolignans is presented in Fig. 1. Through the years, several review articles or books covering different facets of lignans, including their ch- istry (6, 7), biogenesis (8), synthesis (9), and biological activities (10) have been published. Enduring research for the investigation of secondary metabolites of plants has evidenced some compounds that are biogenetically related to true lignans or neolignans but bear some features not discerned in conventional lignans. These compounds or groups of compounds have been termed as “non-conventional lignans”, and include coumarinolignans, ?avonolignans, and stilbenolignans. The non-conventional lignans, like the conventional ones, have two C C units linked 6 3 together but have additional structural features to place them also under the category of coumarins, ?avonoids, or stilbenes.
Publisher: Springer
ISBN: 9783709111079
Category : Science
Languages : en
Pages : 264
Book Description
Lignans, by convention, are a group of natural products that are formed by linking two phenylpropanoid units (C C units) by oxidative coupling. Most importantly, in 6 3 a lignan, two (C C units) are bound through the central carbon of their side chains, 6 3 0 i. e. the 8 and 8 positions (1, 2). The occurrence of C C -dimers, linked at sites other 6 3 0 than the 8–8 positions, is also known and these compounds have been termed neolignans (3, 4). As these two groups of compounds have close structural as well as biosynthetic relationships, they are often associated together and incorporated under the general term “lignan” (5). The diverse structural categorization of true lignans and of a few neolignans is presented in Fig. 1. Through the years, several review articles or books covering different facets of lignans, including their ch- istry (6, 7), biogenesis (8), synthesis (9), and biological activities (10) have been published. Enduring research for the investigation of secondary metabolites of plants has evidenced some compounds that are biogenetically related to true lignans or neolignans but bear some features not discerned in conventional lignans. These compounds or groups of compounds have been termed as “non-conventional lignans”, and include coumarinolignans, ?avonolignans, and stilbenolignans. The non-conventional lignans, like the conventional ones, have two C C units linked 6 3 together but have additional structural features to place them also under the category of coumarins, ?avonoids, or stilbenes.
Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products 88
Author: W. Herz
Publisher: Springer Science & Business Media
ISBN: 3211493891
Category : Science
Languages : en
Pages : 224
Book Description
The volumes contain contributions on various topics related to the origin, distribution, chemistry, synthesis, biochemistry, function or use of various classes of naturally occurring substances ranging from small molecules to biopolymers. Each contribution is written by a recognized authority in his field and provides a comprehensive and up-to-date review of the topic in question.
Publisher: Springer Science & Business Media
ISBN: 3211493891
Category : Science
Languages : en
Pages : 224
Book Description
The volumes contain contributions on various topics related to the origin, distribution, chemistry, synthesis, biochemistry, function or use of various classes of naturally occurring substances ranging from small molecules to biopolymers. Each contribution is written by a recognized authority in his field and provides a comprehensive and up-to-date review of the topic in question.
Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products
Author: S. Hunek
Publisher: Springer Science & Business Media
ISBN: 9783211835180
Category : Medical
Languages : en
Pages : 344
Book Description
The volumes of this classic series, now referred to simply as "Zechmeister” after its founder, L. Zechmeister, have appeared under the Springer Imprint ever since the series’ inauguration in 1938. The volumes contain contributions on various topics related to the origin, distribution, chemistry, synthesis, biochemistry, function or use of various classes of naturally occurring substances ranging from small molecules to biopolymers. Each contribution is written by a recognized authority in his field and provides a comprehensive and up-to-date review of the topic in question. Addressed to biologists, technologists, and chemists alike, the series can be used by the expert as a source of information and literature citations and by the non-expert as a means of orientation in a rapidly developing discipline.
Publisher: Springer Science & Business Media
ISBN: 9783211835180
Category : Medical
Languages : en
Pages : 344
Book Description
The volumes of this classic series, now referred to simply as "Zechmeister” after its founder, L. Zechmeister, have appeared under the Springer Imprint ever since the series’ inauguration in 1938. The volumes contain contributions on various topics related to the origin, distribution, chemistry, synthesis, biochemistry, function or use of various classes of naturally occurring substances ranging from small molecules to biopolymers. Each contribution is written by a recognized authority in his field and provides a comprehensive and up-to-date review of the topic in question. Addressed to biologists, technologists, and chemists alike, the series can be used by the expert as a source of information and literature citations and by the non-expert as a means of orientation in a rapidly developing discipline.
Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products
Author: S. Garai
Publisher: Springer Science & Business Media
ISBN: 9783211830338
Category : Medical
Languages : en
Pages : 320
Book Description
Saponins are complex molecules made up of sugars linked to a triterpenoid or a steroid or a steroidal alkaloid. These natural products are attracting much attention in recent years because of the host of biological activities they exhibit. The diversity of structural features, the challenges of isolation because of their occurrence as complex mixtures, the pharmacological and biological activities still to be discovered, and the prospect of commercialization - these all are driving the study of saponins. Triterpenoid saponins are dominating constituents of this class and occur widely throughout the plant kingdom including some human foods e. g. beans, spinach, tomatoes, and potatoes, and animal feed e. g. alfalfa and clover. Saponins were initially a rather neglected· area of research primarily because of great difficulties in their isolation and characterization. With the advent of more sophisticated methods of isolation and structure elucidation through the last two decades, there has been increased interest in these natural products. Besides structure determination, research activities are now moving forward to clarify structure-activity relationships. Our previous reviews on triterpenoid saponins (l, 2) covered literature from 1979 to mid-1989. The literature on triterpenoid saponins up to 1988 has also been covered by two reviews by HILLER et at. (3, 4). This review incorporates newer trends in isolation and structure determination of triterpenoid saponins, new triterpenoid saponins isolated and biological properties of these products reported during the period late 1989-mid 1996. 2.
Publisher: Springer Science & Business Media
ISBN: 9783211830338
Category : Medical
Languages : en
Pages : 320
Book Description
Saponins are complex molecules made up of sugars linked to a triterpenoid or a steroid or a steroidal alkaloid. These natural products are attracting much attention in recent years because of the host of biological activities they exhibit. The diversity of structural features, the challenges of isolation because of their occurrence as complex mixtures, the pharmacological and biological activities still to be discovered, and the prospect of commercialization - these all are driving the study of saponins. Triterpenoid saponins are dominating constituents of this class and occur widely throughout the plant kingdom including some human foods e. g. beans, spinach, tomatoes, and potatoes, and animal feed e. g. alfalfa and clover. Saponins were initially a rather neglected· area of research primarily because of great difficulties in their isolation and characterization. With the advent of more sophisticated methods of isolation and structure elucidation through the last two decades, there has been increased interest in these natural products. Besides structure determination, research activities are now moving forward to clarify structure-activity relationships. Our previous reviews on triterpenoid saponins (l, 2) covered literature from 1979 to mid-1989. The literature on triterpenoid saponins up to 1988 has also been covered by two reviews by HILLER et at. (3, 4). This review incorporates newer trends in isolation and structure determination of triterpenoid saponins, new triterpenoid saponins isolated and biological properties of these products reported during the period late 1989-mid 1996. 2.
Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products
Author: W. Herz
Publisher: Springer Science & Business Media
ISBN: 9783211833612
Category : Medical
Languages : en
Pages : 286
Book Description
Publisher: Springer Science & Business Media
ISBN: 9783211833612
Category : Medical
Languages : en
Pages : 286
Book Description