Author: Louis J. Billera
Publisher: American Mathematical Soc.
ISBN: 0821803247
Category : Mathematics
Languages : en
Pages : 210
Book Description
Because of the interplay among many fields of mathematics and science, algebraic combinatorics is an area in which a wide variety of ideas and methods come together. The papers in this volume reflect the most interesting aspects of this rich interaction, and will be of interest to researchers in discrete mathematics and combinatorial systems.
Formal Power Series and Algebraic Combinatorics (Series Formelles et Combinatoire Algebrique), 1994
Author: Louis J. Billera
Publisher: American Mathematical Soc.
ISBN: 0821803247
Category : Mathematics
Languages : en
Pages : 210
Book Description
Because of the interplay among many fields of mathematics and science, algebraic combinatorics is an area in which a wide variety of ideas and methods come together. The papers in this volume reflect the most interesting aspects of this rich interaction, and will be of interest to researchers in discrete mathematics and combinatorial systems.
Publisher: American Mathematical Soc.
ISBN: 0821803247
Category : Mathematics
Languages : en
Pages : 210
Book Description
Because of the interplay among many fields of mathematics and science, algebraic combinatorics is an area in which a wide variety of ideas and methods come together. The papers in this volume reflect the most interesting aspects of this rich interaction, and will be of interest to researchers in discrete mathematics and combinatorial systems.
Algebraic Combinatorics
Author: Richard P. Stanley
Publisher: Springer Science & Business Media
ISBN: 1461469988
Category : Mathematics
Languages : en
Pages : 226
Book Description
Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.
Publisher: Springer Science & Business Media
ISBN: 1461469988
Category : Mathematics
Languages : en
Pages : 226
Book Description
Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.
Discrete Geometry and Algebraic Combinatorics
Author: Alexander Barg
Publisher: American Mathematical Society
ISBN: 1470409054
Category : Mathematics
Languages : en
Pages : 202
Book Description
This volume contains the proceedings of the AMS Special Session on Discrete Geometry and Algebraic Combinatorics held on January 11, 2013, in San Diego, California. The collection of articles in this volume is devoted to packings of metric spaces and related questions, and contains new results as well as surveys of some areas of discrete geometry. This volume consists of papers on combinatorics of transportation polytopes, including results on the diameter of graphs of such polytopes; the generalized Steiner problem and related topics of the minimal fillings theory; a survey of distance graphs and graphs of diameters, and a group of papers on applications of algebraic combinatorics to packings of metric spaces including sphere packings and topics in coding theory. In particular, this volume presents a new approach to duality in sphere packing based on the Poisson summation formula, applications of semidefinite programming to spherical codes and equiangular lines, new results in list decoding of a family of algebraic codes, and constructions of bent and semi-bent functions.
Publisher: American Mathematical Society
ISBN: 1470409054
Category : Mathematics
Languages : en
Pages : 202
Book Description
This volume contains the proceedings of the AMS Special Session on Discrete Geometry and Algebraic Combinatorics held on January 11, 2013, in San Diego, California. The collection of articles in this volume is devoted to packings of metric spaces and related questions, and contains new results as well as surveys of some areas of discrete geometry. This volume consists of papers on combinatorics of transportation polytopes, including results on the diameter of graphs of such polytopes; the generalized Steiner problem and related topics of the minimal fillings theory; a survey of distance graphs and graphs of diameters, and a group of papers on applications of algebraic combinatorics to packings of metric spaces including sphere packings and topics in coding theory. In particular, this volume presents a new approach to duality in sphere packing based on the Poisson summation formula, applications of semidefinite programming to spherical codes and equiangular lines, new results in list decoding of a family of algebraic codes, and constructions of bent and semi-bent functions.
Contemporary Trends in Discrete Mathematics
Author: Ronald L. Graham
Publisher: American Mathematical Soc.
ISBN: 0821809636
Category : Mathematics
Languages : en
Pages : 409
Book Description
Twenty-five papers from the May 1997 conference discuss current trends in discrete mathematics in all its versatility, width, and depth. The largest number of papers deal with graph theory. Other topics include a more structural (algebraic) approach, combinatorial questions of an algebraic nature, problems related to computer science, and applications. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: American Mathematical Soc.
ISBN: 0821809636
Category : Mathematics
Languages : en
Pages : 409
Book Description
Twenty-five papers from the May 1997 conference discuss current trends in discrete mathematics in all its versatility, width, and depth. The largest number of papers deal with graph theory. Other topics include a more structural (algebraic) approach, combinatorial questions of an algebraic nature, problems related to computer science, and applications. Annotation copyrighted by Book News, Inc., Portland, OR
Logic and Random Structures
Author: Ravi Bopu Boppana
Publisher: American Mathematical Soc.
ISBN: 0821805789
Category : Mathematics
Languages : en
Pages : 145
Book Description
The articles in this volume are based on lectures presented at the Workshop on Logic and Random Structures, held on November 5 through 7, 1995, at the DIMACS Center at Rutgers, New Jersey. There were two main themes in the workshop. The first was concerned with classes of random finite structures, and probabilities of properties definable in these classes. The second was the complexity of circuits and sentences.
Publisher: American Mathematical Soc.
ISBN: 0821805789
Category : Mathematics
Languages : en
Pages : 145
Book Description
The articles in this volume are based on lectures presented at the Workshop on Logic and Random Structures, held on November 5 through 7, 1995, at the DIMACS Center at Rutgers, New Jersey. There were two main themes in the workshop. The first was concerned with classes of random finite structures, and probabilities of properties definable in these classes. The second was the complexity of circuits and sentences.
African Americans in Mathematics
Author: Nathaniel Dean
Publisher: American Mathematical Soc.
ISBN: 0821806785
Category : Mathematics
Languages : en
Pages : 221
Book Description
This volume contains contains research and expository papers by African-American mathematicians on issues related to their involvement in the mathematical sciences. Little is known, taught, or written about African-American mathematicians. Information is lacking on their past and present contributions and on the qualitive nature of their existence in and distribution throughout mathematics. This lack of information leads to a number of questions that have to date remainedunanswered. This volume provides details and pointers to help answer some of these questions.
Publisher: American Mathematical Soc.
ISBN: 0821806785
Category : Mathematics
Languages : en
Pages : 221
Book Description
This volume contains contains research and expository papers by African-American mathematicians on issues related to their involvement in the mathematical sciences. Little is known, taught, or written about African-American mathematicians. Information is lacking on their past and present contributions and on the qualitive nature of their existence in and distribution throughout mathematics. This lack of information leads to a number of questions that have to date remainedunanswered. This volume provides details and pointers to help answer some of these questions.
Combinatorial Commutative Algebra
Author: Ezra Miller
Publisher: Springer Science & Business Media
ISBN: 9780387237077
Category : Mathematics
Languages : en
Pages : 442
Book Description
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
Publisher: Springer Science & Business Media
ISBN: 9780387237077
Category : Mathematics
Languages : en
Pages : 442
Book Description
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
Algebraic Methods and Q-special Functions
Author: Jan Felipe Van Diejen
Publisher: American Mathematical Soc.
ISBN: 9780821873298
Category : Mathematics
Languages : en
Pages : 302
Book Description
There has been revived interest in recent years in the study of special functions. Many of the latest advances in the field were inspired by the works of R. A. Askey and colleagues on basic hypergeometric series and I. G. Macdonald on orthogonal polynomials related to root systems. Significant progress was made by the use of algebraic techniques involving quantum groups, Hecke algebras, and combinatorial methods. The CRM organized a workshop for key researchers in the field to present an overview of current trends. This volume consists of the contributions to that workshop. Topics include basic hypergeometric functions, algebraic and representation-theoretic methods, combinatorics of symmetric functions, root systems, and the connections with integrable systems.
Publisher: American Mathematical Soc.
ISBN: 9780821873298
Category : Mathematics
Languages : en
Pages : 302
Book Description
There has been revived interest in recent years in the study of special functions. Many of the latest advances in the field were inspired by the works of R. A. Askey and colleagues on basic hypergeometric series and I. G. Macdonald on orthogonal polynomials related to root systems. Significant progress was made by the use of algebraic techniques involving quantum groups, Hecke algebras, and combinatorial methods. The CRM organized a workshop for key researchers in the field to present an overview of current trends. This volume consists of the contributions to that workshop. Topics include basic hypergeometric functions, algebraic and representation-theoretic methods, combinatorics of symmetric functions, root systems, and the connections with integrable systems.
Eulerian Numbers
Author: T. Kyle Petersen
Publisher: Birkhäuser
ISBN: 1493930915
Category : Mathematics
Languages : en
Pages : 463
Book Description
This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, which survey more advanced topics, including some open problems in combinatorial topology. This textbook will serve a resource for experts in the field as well as for graduate students and others hoping to learn about these topics for the first time.
Publisher: Birkhäuser
ISBN: 1493930915
Category : Mathematics
Languages : en
Pages : 463
Book Description
This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, which survey more advanced topics, including some open problems in combinatorial topology. This textbook will serve a resource for experts in the field as well as for graduate students and others hoping to learn about these topics for the first time.
Recent Trends in Algebraic Combinatorics
Author: Hélène Barcelo
Publisher: Springer
ISBN: 3030051412
Category : Mathematics
Languages : en
Pages : 364
Book Description
This edited volume features a curated selection of research in algebraic combinatorics that explores the boundaries of current knowledge in the field. Focusing on topics experiencing broad interest and rapid growth, invited contributors offer survey articles on representation theory, symmetric functions, invariant theory, and the combinatorics of Young tableaux. The volume also addresses subjects at the intersection of algebra, combinatorics, and geometry, including the study of polytopes, lattice points, hyperplane arrangements, crystal graphs, and Grassmannians. All surveys are written at an introductory level that emphasizes recent developments and open problems. An interactive tutorial on Schubert Calculus emphasizes the geometric and topological aspects of the topic and is suitable for combinatorialists as well as geometrically minded researchers seeking to gain familiarity with relevant combinatorial tools. Featured authors include prominent women in the field known for their exceptional writing of deep mathematics in an accessible manner. Each article in this volume was reviewed independently by two referees. The volume is suitable for graduate students and researchers interested in algebraic combinatorics.
Publisher: Springer
ISBN: 3030051412
Category : Mathematics
Languages : en
Pages : 364
Book Description
This edited volume features a curated selection of research in algebraic combinatorics that explores the boundaries of current knowledge in the field. Focusing on topics experiencing broad interest and rapid growth, invited contributors offer survey articles on representation theory, symmetric functions, invariant theory, and the combinatorics of Young tableaux. The volume also addresses subjects at the intersection of algebra, combinatorics, and geometry, including the study of polytopes, lattice points, hyperplane arrangements, crystal graphs, and Grassmannians. All surveys are written at an introductory level that emphasizes recent developments and open problems. An interactive tutorial on Schubert Calculus emphasizes the geometric and topological aspects of the topic and is suitable for combinatorialists as well as geometrically minded researchers seeking to gain familiarity with relevant combinatorial tools. Featured authors include prominent women in the field known for their exceptional writing of deep mathematics in an accessible manner. Each article in this volume was reviewed independently by two referees. The volume is suitable for graduate students and researchers interested in algebraic combinatorics.