Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations

Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations PDF Author: Maria Colombo
Publisher: Springer
ISBN: 8876426078
Category : Mathematics
Languages : en
Pages : 285

Get Book Here

Book Description
The first part of the book is devoted to the transport equation for a given vector field, exploiting the lagrangian structure of solutions. It also treats the regularity of solutions of some degenerate elliptic equations, which appear in the eulerian counterpart of some transport models with congestion. The second part of the book deals with the lagrangian structure of solutions of the Vlasov-Poisson system, which describes the evolution of a system of particles under the self-induced gravitational/electrostatic field, and the existence of solutions of the semigeostrophic system, used in meteorology to describe the motion of large-scale oceanic/atmospheric flows.​

Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations

Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations PDF Author: Maria Colombo
Publisher: Springer
ISBN: 8876426078
Category : Mathematics
Languages : en
Pages : 285

Get Book Here

Book Description
The first part of the book is devoted to the transport equation for a given vector field, exploiting the lagrangian structure of solutions. It also treats the regularity of solutions of some degenerate elliptic equations, which appear in the eulerian counterpart of some transport models with congestion. The second part of the book deals with the lagrangian structure of solutions of the Vlasov-Poisson system, which describes the evolution of a system of particles under the self-induced gravitational/electrostatic field, and the existence of solutions of the semigeostrophic system, used in meteorology to describe the motion of large-scale oceanic/atmospheric flows.​

Weighted Sobolev Spaces and Degenerate Elliptic Equations

Weighted Sobolev Spaces and Degenerate Elliptic Equations PDF Author: Albo Carlos Cavalheiro
Publisher: Cambridge Scholars Publishing
ISBN: 1527551679
Category : Mathematics
Languages : en
Pages : 333

Get Book Here

Book Description
In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is disturbed in the sense that some degeneration or singularity appears. This bad behavior can be caused by the coefficients of the corresponding differential operator as well as by the solution itself. There are several very concrete problems in various practices which lead to such differential equations, such as glaciology, non-Newtonian fluid mechanics, flows through porous media, differential geometry, celestial mechanics, climatology, and reaction-diffusion problems, among others. This book is based on research by the author on degenerate elliptic equations. This book will be a useful reference source for graduate students and researchers interested in differential equations.

Spaces of Measures and their Applications to Structured Population Models

Spaces of Measures and their Applications to Structured Population Models PDF Author: Christian Düll
Publisher: Cambridge University Press
ISBN: 1009020471
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
Structured population models are transport-type equations often applied to describe evolution of heterogeneous populations of biological cells, animals or humans, including phenomena such as crowd dynamics or pedestrian flows. This book introduces the mathematical underpinnings of these applications, providing a comprehensive analytical framework for structured population models in spaces of Radon measures. The unified approach allows for the study of transport processes on structures that are not vector spaces (such as traffic flow on graphs) and enables the analysis of the numerical algorithms used in applications. Presenting a coherent account of over a decade of research in the area, the text includes appendices outlining the necessary background material and discusses current trends in the theory, enabling graduate students to jump quickly into research.

Ricci Flow and the Sphere Theorem

Ricci Flow and the Sphere Theorem PDF Author: Simon Brendle
Publisher: American Mathematical Soc.
ISBN: 0821849387
Category : Mathematics
Languages : en
Pages : 186

Get Book Here

Book Description
Deals with the Ricci flow, and the convergence theory for the Ricci flow. This title focuses on preserved curvature conditions, such as positive isotropic curvature. It is suitable for graduate students and researchers.

Fokker–Planck–Kolmogorov Equations

Fokker–Planck–Kolmogorov Equations PDF Author: Vladimir I. Bogachev
Publisher: American Mathematical Society
ISBN: 1470470098
Category : Mathematics
Languages : en
Pages : 495

Get Book Here

Book Description
This book gives an exposition of the principal concepts and results related to second order elliptic and parabolic equations for measures, the main examples of which are Fokker–Planck–Kolmogorov equations for stationary and transition probabilities of diffusion processes. Existence and uniqueness of solutions are studied along with existence and Sobolev regularity of their densities and upper and lower bounds for the latter. The target readership includes mathematicians and physicists whose research is related to diffusion processes as well as elliptic and parabolic equations.

Smooth Ergodic Theory of Random Dynamical Systems

Smooth Ergodic Theory of Random Dynamical Systems PDF Author: Pei-Dong Liu
Publisher: Springer
ISBN: 3540492917
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
This book studies ergodic-theoretic aspects of random dynam- ical systems, i.e. of deterministic systems with noise. It aims to present a systematic treatment of a series of recent results concerning invariant measures, entropy and Lyapunov exponents of such systems, and can be viewed as an update of Kifer's book. An entropy formula of Pesin's type occupies the central part. The introduction of relation numbers (ch.2) is original and most methods involved in the book are canonical in dynamical systems or measure theory. The book is intended for people interested in noise-perturbed dynam- ical systems, and can pave the way to further study of the subject. Reasonable knowledge of differential geometry, measure theory, ergodic theory, dynamical systems and preferably random processes is assumed.

Gradient Flows

Gradient Flows PDF Author: Luigi Ambrosio
Publisher: Springer Science & Business Media
ISBN: 376438722X
Category : Mathematics
Languages : en
Pages : 333

Get Book Here

Book Description
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.

Rohlin Flows on von Neumann Algebras

Rohlin Flows on von Neumann Algebras PDF Author: Toshihiko Masuda
Publisher: American Mathematical Soc.
ISBN: 1470420163
Category : Mathematics
Languages : en
Pages : 128

Get Book Here

Book Description
The authors will classify Rohlin flows on von Neumann algebras up to strong cocycle conjugacy. This result provides alternative approaches to some preceding results such as Kawahigashi's classification of flows on the injective type II1 factor, the classification of injective type III factors due to Connes, Krieger and Haagerup and the non-fullness of type III0 factors. Several concrete examples are also studied.

Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow

Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow PDF Author: Hamid Bellout
Publisher: Springer Science & Business Media
ISBN: 3319008919
Category : Science
Languages : en
Pages : 583

Get Book Here

Book Description
The theory of incompressible multipolar viscous fluids is a non-Newtonian model of fluid flow, which incorporates nonlinear viscosity, as well as higher order velocity gradients, and is based on scientific first principles. The Navier-Stokes model of fluid flow is based on the Stokes hypothesis, which a priori simplifies and restricts the relationship between the stress tensor and the velocity. By relaxing the constraints of the Stokes hypothesis, the mathematical theory of multipolar viscous fluids generalizes the standard Navier-Stokes model. The rigorous theory of multipolar viscous fluids is compatible with all known thermodynamical processes and the principle of material frame indifference; this is in contrast with the formulation of most non-Newtonian fluid flow models which result from ad hoc assumptions about the relation between the stress tensor and the velocity. The higher-order boundary conditions, which must be formulated for multipolar viscous flow problems, are a rigorous consequence of the principle of virtual work; this is in stark contrast to the approach employed by authors who have studied the regularizing effects of adding artificial viscosity, in the form of higher order spatial derivatives, to the Navier-Stokes model. A number of research groups, primarily in the United States, Germany, Eastern Europe, and China, have explored the consequences of multipolar viscous fluid models; these efforts, and those of the authors, which are described in this book, have focused on the solution of problems in the context of specific geometries, on the existence of weak and classical solutions, and on dynamical systems aspects of the theory. This volume will be a valuable resource for mathematicians interested in solutions to systems of nonlinear partial differential equations, as well as to applied mathematicians, fluid dynamicists, and mechanical engineers with an interest in the problems of fluid mechanics.

Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces

Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces PDF Author: Ariel Barton:
Publisher: American Mathematical Soc.
ISBN: 1470419890
Category : Mathematics
Languages : en
Pages : 122

Get Book Here

Book Description
This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted Lp classes. The authors establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given Lp space automatically assures their solvability in an extended range of Besov spaces; (3) Well-posedness for the non-homogeneous boundary value problems. In particular, the authors prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for operators with real, not necessarily symmetric, coefficients.