Author: William W. Luggen
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 488
Book Description
An introductory survey of FMS, this applications-oriented text provides a description of automated cells and systems and covers hardware, software, support, service, planning, installation and implementation issues.
Flexible Manufacturing Cells and Systems
Author: William W. Luggen
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 488
Book Description
An introductory survey of FMS, this applications-oriented text provides a description of automated cells and systems and covers hardware, software, support, service, planning, installation and implementation issues.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 488
Book Description
An introductory survey of FMS, this applications-oriented text provides a description of automated cells and systems and covers hardware, software, support, service, planning, installation and implementation issues.
Flexible Manufacturing Cells and Systems
Author: William W. Luggen
Publisher:
ISBN: 9780133219777
Category : FMS
Languages : en
Pages : 461
Book Description
An introductory survey of FMS, this applications-oriented text provides a description of automated cells and systems and covers hardware, software, support, service, planning, installation and implementation issues.
Publisher:
ISBN: 9780133219777
Category : FMS
Languages : en
Pages : 461
Book Description
An introductory survey of FMS, this applications-oriented text provides a description of automated cells and systems and covers hardware, software, support, service, planning, installation and implementation issues.
Manufacturing Flexible Packaging
Author: Thomas Dunn
Publisher: William Andrew
ISBN: 0323265057
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
Efficiently and profitably delivering quality flexible packaging to the marketplace requires designing and manufacturing products that are both "fit-to-use" and "fit-to-make". The engineering function in a flexible packaging enterprise must attend to these dual design challenges. Flexible Packaging discusses the basic processes used to manufacture flexible packaging products, including rotogravure printing, flexographic printing, adhesive lamination, extrusion lamination/coating; and finishing/slitting. These processes are then related to the machines used to practice them, emphasising the basics of machines’ control systems , and options to minimize wasted time and materials between production jobs. Raw materials are also considered, including the three basic forms: Rollstock (paper, foil, plastic films); Resin; and Wets (inks, varnishes, primers). Guidance is provided on both material selection, and on adding value through enhancement or modification of the materials’ physical features. A ‘measures’ section covers both primary material features – such as tensile, elongation, modulus and elastic and plastic regions – and secondary quality characteristics such as seal and bond strengths, coefficient of friction, oxygen barrier and moisture vapour barrier. Helps engineers improve existing raw material selection and manufacturing processes for manufacturing functional flexible packaging materials. Covers all aspects of delivering high value packaging to the customer – from the raw materials, to the methods of processing them, the machines used to do it, and the measures required to gauge the characteristics of the product. Helps engineers to minimize waste and unproductive time in production.
Publisher: William Andrew
ISBN: 0323265057
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
Efficiently and profitably delivering quality flexible packaging to the marketplace requires designing and manufacturing products that are both "fit-to-use" and "fit-to-make". The engineering function in a flexible packaging enterprise must attend to these dual design challenges. Flexible Packaging discusses the basic processes used to manufacture flexible packaging products, including rotogravure printing, flexographic printing, adhesive lamination, extrusion lamination/coating; and finishing/slitting. These processes are then related to the machines used to practice them, emphasising the basics of machines’ control systems , and options to minimize wasted time and materials between production jobs. Raw materials are also considered, including the three basic forms: Rollstock (paper, foil, plastic films); Resin; and Wets (inks, varnishes, primers). Guidance is provided on both material selection, and on adding value through enhancement or modification of the materials’ physical features. A ‘measures’ section covers both primary material features – such as tensile, elongation, modulus and elastic and plastic regions – and secondary quality characteristics such as seal and bond strengths, coefficient of friction, oxygen barrier and moisture vapour barrier. Helps engineers improve existing raw material selection and manufacturing processes for manufacturing functional flexible packaging materials. Covers all aspects of delivering high value packaging to the customer – from the raw materials, to the methods of processing them, the machines used to do it, and the measures required to gauge the characteristics of the product. Helps engineers to minimize waste and unproductive time in production.
Design of Flexible Production Systems
Author: Tullio Tolio
Publisher: Springer Science & Business Media
ISBN: 3540854142
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
In the last decade, the production of mechanical components to be assembled in final products produced in high volumes (e.g. cars, mopeds, industrial vehicles, etc.) has undergone deep changes due to the overall modifications in the way companies compete. Companies must consider competitive factors such as short lead times, tight product tolerances, frequent market changes and cost reduction. Anyway, companies often have to define production objectives as trade-offs among these critical factors since it can be difficult to improve all of them. Even if system flexibility is often considered a fundamental requirement for firms, it is not always a desirable characteristic of a system because it requires relevant investment cost which can jeopardize the profitability of the firm. Dedicated systems are not able to adapt to changes of the product characteristics while flexible systems offer more flexibility than what is needed, thus increasing investment and operative costs. Production contexts characterized by mid to high demand volume of well identified families of products in continuous evolution do not require the highest level of flexibility; therefore, manufacturing system flexibility must be rationalized and it is necessary to find out the best trade-off between productivity and flexibility by designing manufacturing systems endowed with the right level of flexibility required by the production problem. This new class of production systems can be named Focused Flexibility Manufacturing Systems-FFMSs. The flexibility degree in FFMSs is related to their ability to cope with volume, mix and technological changes, and it must take into account both present and future changes. The required level of system flexibility impacts on the architecture of the system and the explicit design of flexibility often leads to hybrid systems, i.e. automated integrated systems in which parts can be processed by both general purpose and dedicated machines. This is a key issue of FFMSs and results from the matching of flexibility and productivity that respectively characterize FMSs and Dedicated Manufacturing Systems (DMSs). The market share of the EU in the machine tool sector is 44%; the introduction of focused flexibility would be particularly important for machine tool builders whose competitive advantage is based on the ability of customizing their systems on the basis of needs of their customers. In fact, even if current production contexts frequently present situations which would fit well with the FFMS approach, tradition and know-how of machine tool builders play a crucial role. Firms often agree with the focused flexibility vision, nevertheless they decide not to pay the risk and efforts related to the design of this new system architecture. This is due also to the lack of well-structured design approaches which can help machine tool builders to configure innovative systems. Therefore, the FFMS topic is studied through the book chapters following a shared mission: "To define methodologies and tools to design production systems with a minimum level of flexibility needed to face, during their lifecycle, the product and process evolution both in the technological and demand aspects. The goal is to find out the optimal trade-off between flexibility and productivity". The book framework follows the architecture which has been developed to address the FFMS Design problem. This architecture is both broad and detailed, since it pays attention to all the relevant levels in a firm hierarchy which are involved in the system design. Moreover, the architecture is innovative because it models both the point of view of the machine tool builder and the point of view of the system user. The architecture starts analyzing Manufacturing Strategy issues and generating the possible demand scenario to be faced. Technological aspects play a key role while solving process plan problems for the products in the part family. Strategic and technological data becomes input when a machine tool builder performs system configuration. The resulting system configurations are possible solutions that a system user considers when planning its system capacity. All the steps of the architecture are deeply studied, developing methods and tools to address each subproblem. Particular attention is paid to the methodologies adopted to face the different subproblems: mathematical programming, stochastic programming, simulation techniques and inverse kinematics have been used. The whole architecture provides a general approach to implement the right degree of flexibility and it allows to study how different aspects and decisions taken in a firm impact on each other. The work presented in the book is innovative because it gives links among different research fields, such as Manufacturing Strategy, Process Plan, System Design, Capacity Planning and Performance Evaluation; moreover, it helps to formalize and rationalize a critical area such as manufacturing system flexibility. The addressed problem is relevant at an academic level but, also, at an industrial level. A great deal of industrial sectors need to address the problem of designing systems with the right degree of flexibility; for instance, automotive, white goods, electrical and electronic goods industries, etc. Attention to industrial issues is confirmed by empirical studies and real case analyses which are presented within the book chapters.
Publisher: Springer Science & Business Media
ISBN: 3540854142
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
In the last decade, the production of mechanical components to be assembled in final products produced in high volumes (e.g. cars, mopeds, industrial vehicles, etc.) has undergone deep changes due to the overall modifications in the way companies compete. Companies must consider competitive factors such as short lead times, tight product tolerances, frequent market changes and cost reduction. Anyway, companies often have to define production objectives as trade-offs among these critical factors since it can be difficult to improve all of them. Even if system flexibility is often considered a fundamental requirement for firms, it is not always a desirable characteristic of a system because it requires relevant investment cost which can jeopardize the profitability of the firm. Dedicated systems are not able to adapt to changes of the product characteristics while flexible systems offer more flexibility than what is needed, thus increasing investment and operative costs. Production contexts characterized by mid to high demand volume of well identified families of products in continuous evolution do not require the highest level of flexibility; therefore, manufacturing system flexibility must be rationalized and it is necessary to find out the best trade-off between productivity and flexibility by designing manufacturing systems endowed with the right level of flexibility required by the production problem. This new class of production systems can be named Focused Flexibility Manufacturing Systems-FFMSs. The flexibility degree in FFMSs is related to their ability to cope with volume, mix and technological changes, and it must take into account both present and future changes. The required level of system flexibility impacts on the architecture of the system and the explicit design of flexibility often leads to hybrid systems, i.e. automated integrated systems in which parts can be processed by both general purpose and dedicated machines. This is a key issue of FFMSs and results from the matching of flexibility and productivity that respectively characterize FMSs and Dedicated Manufacturing Systems (DMSs). The market share of the EU in the machine tool sector is 44%; the introduction of focused flexibility would be particularly important for machine tool builders whose competitive advantage is based on the ability of customizing their systems on the basis of needs of their customers. In fact, even if current production contexts frequently present situations which would fit well with the FFMS approach, tradition and know-how of machine tool builders play a crucial role. Firms often agree with the focused flexibility vision, nevertheless they decide not to pay the risk and efforts related to the design of this new system architecture. This is due also to the lack of well-structured design approaches which can help machine tool builders to configure innovative systems. Therefore, the FFMS topic is studied through the book chapters following a shared mission: "To define methodologies and tools to design production systems with a minimum level of flexibility needed to face, during their lifecycle, the product and process evolution both in the technological and demand aspects. The goal is to find out the optimal trade-off between flexibility and productivity". The book framework follows the architecture which has been developed to address the FFMS Design problem. This architecture is both broad and detailed, since it pays attention to all the relevant levels in a firm hierarchy which are involved in the system design. Moreover, the architecture is innovative because it models both the point of view of the machine tool builder and the point of view of the system user. The architecture starts analyzing Manufacturing Strategy issues and generating the possible demand scenario to be faced. Technological aspects play a key role while solving process plan problems for the products in the part family. Strategic and technological data becomes input when a machine tool builder performs system configuration. The resulting system configurations are possible solutions that a system user considers when planning its system capacity. All the steps of the architecture are deeply studied, developing methods and tools to address each subproblem. Particular attention is paid to the methodologies adopted to face the different subproblems: mathematical programming, stochastic programming, simulation techniques and inverse kinematics have been used. The whole architecture provides a general approach to implement the right degree of flexibility and it allows to study how different aspects and decisions taken in a firm impact on each other. The work presented in the book is innovative because it gives links among different research fields, such as Manufacturing Strategy, Process Plan, System Design, Capacity Planning and Performance Evaluation; moreover, it helps to formalize and rationalize a critical area such as manufacturing system flexibility. The addressed problem is relevant at an academic level but, also, at an industrial level. A great deal of industrial sectors need to address the problem of designing systems with the right degree of flexibility; for instance, automotive, white goods, electrical and electronic goods industries, etc. Attention to industrial issues is confirmed by empirical studies and real case analyses which are presented within the book chapters.
Handbook of Cellular Manufacturing Systems
Author: Shahrukh A. Irani
Publisher: John Wiley & Sons
ISBN: 9780471121398
Category : Computers
Languages : en
Pages : 784
Book Description
Cellular manufacturing (CM) is the grouping of similar products for manufacture in discrete multi-machine cells. It has been proven to yield faster production cycles, lower in-process inventory levels, and enhanced product quality. Pioneered on a large scale by Russian, British, and German manufacturers, interest in CM methods has grown steadily over the past decade. However, there continues to be a dearth of practical guides for industrial engineers and production managers interested in implementing CM techniques in their plants. Bringing together contributions by an international team of CM experts, the Handbook of Cellular Manufacturing Systems bridges this gap in the engineering literature.
Publisher: John Wiley & Sons
ISBN: 9780471121398
Category : Computers
Languages : en
Pages : 784
Book Description
Cellular manufacturing (CM) is the grouping of similar products for manufacture in discrete multi-machine cells. It has been proven to yield faster production cycles, lower in-process inventory levels, and enhanced product quality. Pioneered on a large scale by Russian, British, and German manufacturers, interest in CM methods has grown steadily over the past decade. However, there continues to be a dearth of practical guides for industrial engineers and production managers interested in implementing CM techniques in their plants. Bringing together contributions by an international team of CM experts, the Handbook of Cellular Manufacturing Systems bridges this gap in the engineering literature.
Operations Management Research and Cellular Manufacturing Systems: Innovative Methods and Approaches
Author: Modr k, Vladimir
Publisher: IGI Global
ISBN: 1613500483
Category : Business & Economics
Languages : en
Pages : 455
Book Description
"This book presents advancements in the field of operations management, focusing specifically on topics related to layout design for manufacturing environments"--Provided by publisher.
Publisher: IGI Global
ISBN: 1613500483
Category : Business & Economics
Languages : en
Pages : 455
Book Description
"This book presents advancements in the field of operations management, focusing specifically on topics related to layout design for manufacturing environments"--Provided by publisher.
Encyclopedia of Production and Manufacturing Management
Author: Paul M. Swamidass
Publisher: Springer Science & Business Media
ISBN: 0792386302
Category : Business & Economics
Languages : en
Pages : 833
Book Description
Production and manufacturing management since the 1980s has absorbed in rapid succession several new production management concepts: manufacturing strategy, focused factory, just-in-time manufacturing, concurrent engineering, total quality management, supply chain management, flexible manufacturing systems, lean production, mass customization, and more. With the increasing globalization of manufacturing, the field will continue to expand. This encyclopedia's audience includes anyone concerned with manufacturing techniques, methods, and manufacturing decisions.
Publisher: Springer Science & Business Media
ISBN: 0792386302
Category : Business & Economics
Languages : en
Pages : 833
Book Description
Production and manufacturing management since the 1980s has absorbed in rapid succession several new production management concepts: manufacturing strategy, focused factory, just-in-time manufacturing, concurrent engineering, total quality management, supply chain management, flexible manufacturing systems, lean production, mass customization, and more. With the increasing globalization of manufacturing, the field will continue to expand. This encyclopedia's audience includes anyone concerned with manufacturing techniques, methods, and manufacturing decisions.
Stem Cell Manufacturing
Author: Joaquim M.S. Cabral
Publisher: Elsevier
ISBN: 0444632662
Category : Medical
Languages : en
Pages : 342
Book Description
Stem Cell Manufacturing discusses the required technologies that enable the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic environment as therapeutics, while concurrently achieving control, reproducibility, automation, validation, and safety of the process and the product. The advent of stem cell research unveiled the therapeutic potential of stem cells and their derivatives and increased the awareness of the public and scientific community for the topic. The successful manufacturing of stem cells and their derivatives is expected to have a positive impact in the society since it will contribute to widen the offer of therapeutic solutions to the patients. Fully defined cellular products can be used to restore the structure and function of damaged tissues and organs and to develop stem cell-based cellular therapies for the treatment of cancer and hematological disorders, autoimmune and other inflammatory diseases and genetic disorders. - Presents the first 'Flowchart' of stem cell manufacturing enabling easy understanding of the various processes in a sequential and coherent manner - Covers all bioprocess technologies required for the transfer of the bench findings to the clinic including the process components: cell signals, bioreactors, modeling, automation, safety, etc. - Presents comprehensive coverage of a true multidisciplinary topic by bringing together specialists in their particular area - Provides the basics of the processes and identifies the issues to be resolved for large scale cell culture by the bioengineer - Addresses the critical need in bioprocessing for the successful delivery of stem cell technology to the market place by involving professional engineers in sections of the book
Publisher: Elsevier
ISBN: 0444632662
Category : Medical
Languages : en
Pages : 342
Book Description
Stem Cell Manufacturing discusses the required technologies that enable the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic environment as therapeutics, while concurrently achieving control, reproducibility, automation, validation, and safety of the process and the product. The advent of stem cell research unveiled the therapeutic potential of stem cells and their derivatives and increased the awareness of the public and scientific community for the topic. The successful manufacturing of stem cells and their derivatives is expected to have a positive impact in the society since it will contribute to widen the offer of therapeutic solutions to the patients. Fully defined cellular products can be used to restore the structure and function of damaged tissues and organs and to develop stem cell-based cellular therapies for the treatment of cancer and hematological disorders, autoimmune and other inflammatory diseases and genetic disorders. - Presents the first 'Flowchart' of stem cell manufacturing enabling easy understanding of the various processes in a sequential and coherent manner - Covers all bioprocess technologies required for the transfer of the bench findings to the clinic including the process components: cell signals, bioreactors, modeling, automation, safety, etc. - Presents comprehensive coverage of a true multidisciplinary topic by bringing together specialists in their particular area - Provides the basics of the processes and identifies the issues to be resolved for large scale cell culture by the bioengineer - Addresses the critical need in bioprocessing for the successful delivery of stem cell technology to the market place by involving professional engineers in sections of the book
CIRP Encyclopedia of Production Engineering
Author: The International Academy for Produ
Publisher: Springer
ISBN: 9783642206160
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
The CIRP Encyclopedia covers the state-of-art of advanced technologies, methods and models for production, production engineering and logistics. While the technological and operational aspects are in the focus, economical aspects are addressed too. The entries for a wide variety of terms were reviewed by the CIRP-Community, representing the highest standards in research. Thus, the content is not only evaluated internationally on a high scientific level but also reflects very recent developments.
Publisher: Springer
ISBN: 9783642206160
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
The CIRP Encyclopedia covers the state-of-art of advanced technologies, methods and models for production, production engineering and logistics. While the technological and operational aspects are in the focus, economical aspects are addressed too. The entries for a wide variety of terms were reviewed by the CIRP-Community, representing the highest standards in research. Thus, the content is not only evaluated internationally on a high scientific level but also reflects very recent developments.
The Automotive Body Manufacturing Systems and Processes
Author: Mohammed A. Omar
Publisher: John Wiley & Sons
ISBN: 0470976330
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
A comprehensive and dedicated guide to automotive production lines, The Automotive Body Manufacturing Systems and Processes addresses automotive body processes from the stamping operations through the final assembly activities. To begin, it discusses current metal forming practices, including stamping engineering, die development, and dimensional validation, and new innovations in metal forming, such as folding based forming, super-plastic, and hydro forming technologies. The first section also explains details of automotive spot welding (welding lobes), arc welding, and adhesive bonding, in addition to flexible fixturing systems and welding robotic cells. Guiding readers through each stage in the process of automotive painting, including the calculations needed to compute the number of applicators and paint consumption based on vehicle dimensions and demand, along with the final assembly and automotive mechanical fastening strategies, the book's systematic coverage is unique. The second module of the book focuses on the layout strategies of the automotive production line. A discussion of automotive aggregate planning and master production scheduling ensures that the reader is familiar with operational aspects. The book also reviews the energy emissions and expenditures of automotive production processes and proposes new technical solutions to reduce environmental impact. Provides extensive technical coverage of automotive production processes, discussing flexible stamping, welding and painting lines Gives complete information on automotive production costing as well as the supplier selection process Covers systems from the operational perspective, describing the aggregate and master production planning Details technical aspects of flexible automotive manufacturing lines Methodically discusses the layout and location strategies of automotive manufacturing systems to encompass the structural elements Features topic-related questions with answers on a companion website
Publisher: John Wiley & Sons
ISBN: 0470976330
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
A comprehensive and dedicated guide to automotive production lines, The Automotive Body Manufacturing Systems and Processes addresses automotive body processes from the stamping operations through the final assembly activities. To begin, it discusses current metal forming practices, including stamping engineering, die development, and dimensional validation, and new innovations in metal forming, such as folding based forming, super-plastic, and hydro forming technologies. The first section also explains details of automotive spot welding (welding lobes), arc welding, and adhesive bonding, in addition to flexible fixturing systems and welding robotic cells. Guiding readers through each stage in the process of automotive painting, including the calculations needed to compute the number of applicators and paint consumption based on vehicle dimensions and demand, along with the final assembly and automotive mechanical fastening strategies, the book's systematic coverage is unique. The second module of the book focuses on the layout strategies of the automotive production line. A discussion of automotive aggregate planning and master production scheduling ensures that the reader is familiar with operational aspects. The book also reviews the energy emissions and expenditures of automotive production processes and proposes new technical solutions to reduce environmental impact. Provides extensive technical coverage of automotive production processes, discussing flexible stamping, welding and painting lines Gives complete information on automotive production costing as well as the supplier selection process Covers systems from the operational perspective, describing the aggregate and master production planning Details technical aspects of flexible automotive manufacturing lines Methodically discusses the layout and location strategies of automotive manufacturing systems to encompass the structural elements Features topic-related questions with answers on a companion website