Author: Viktoria Heu
Publisher: American Mathematical Soc.
ISBN: 1470435667
Category : Mathematics
Languages : en
Pages : 116
Book Description
The authors study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of underlying vector bundles (including unstable bundles), for which they compute a natural Lagrangian rational section. As a particularity of the genus case, connections as above are invariant under the hyperelliptic involution: they descend as rank logarithmic connections over the Riemann sphere. The authors establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allows the authors to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical -configuration of the Kummer surface. The authors also recover a Poincaré family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. They explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by van Geemen-Previato. They explicitly describe the isomonodromic foliation in the moduli space of vector bundles with -connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles.
Flat Rank Two Vector Bundles on Genus Two Curves
Author: Viktoria Heu
Publisher: American Mathematical Soc.
ISBN: 1470435667
Category : Mathematics
Languages : en
Pages : 116
Book Description
The authors study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of underlying vector bundles (including unstable bundles), for which they compute a natural Lagrangian rational section. As a particularity of the genus case, connections as above are invariant under the hyperelliptic involution: they descend as rank logarithmic connections over the Riemann sphere. The authors establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allows the authors to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical -configuration of the Kummer surface. The authors also recover a Poincaré family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. They explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by van Geemen-Previato. They explicitly describe the isomonodromic foliation in the moduli space of vector bundles with -connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles.
Publisher: American Mathematical Soc.
ISBN: 1470435667
Category : Mathematics
Languages : en
Pages : 116
Book Description
The authors study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of underlying vector bundles (including unstable bundles), for which they compute a natural Lagrangian rational section. As a particularity of the genus case, connections as above are invariant under the hyperelliptic involution: they descend as rank logarithmic connections over the Riemann sphere. The authors establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allows the authors to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical -configuration of the Kummer surface. The authors also recover a Poincaré family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. They explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by van Geemen-Previato. They explicitly describe the isomonodromic foliation in the moduli space of vector bundles with -connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles.
Compact Quotients of Cahen-Wallach Spaces
Author: Ines Kath
Publisher: American Mathematical Soc.
ISBN: 1470441039
Category : Education
Languages : en
Pages : 96
Book Description
Indecomposable symmetric Lorentzian manifolds of non-constant curvature are called Cahen-Wallach spaces. Their isometry classes are described by continuous families of real parameters. The authors derive necessary and sufficient conditions for the existence of compact quotients of Cahen-Wallach spaces in terms of these parameters.
Publisher: American Mathematical Soc.
ISBN: 1470441039
Category : Education
Languages : en
Pages : 96
Book Description
Indecomposable symmetric Lorentzian manifolds of non-constant curvature are called Cahen-Wallach spaces. Their isometry classes are described by continuous families of real parameters. The authors derive necessary and sufficient conditions for the existence of compact quotients of Cahen-Wallach spaces in terms of these parameters.
A Local Relative Trace Formula for the Ginzburg-Rallis Model: The Geometric Side
Author: Chen Wan
Publisher: American Mathematical Soc.
ISBN: 1470436868
Category : Education
Languages : en
Pages : 102
Book Description
Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model. Then by applying such formula, the author proves a multiplicity formula of the Ginzburg-Rallis model for the supercuspidal representations. Using that multiplicity formula, the author proves the multiplicity one theorem for the Ginzburg-Rallis model over Vogan packets in the supercuspidal case.
Publisher: American Mathematical Soc.
ISBN: 1470436868
Category : Education
Languages : en
Pages : 102
Book Description
Following the method developed by Waldspurger and Beuzart-Plessis in their proofs of the local Gan-Gross-Prasad conjecture, the author is able to prove the geometric side of a local relative trace formula for the Ginzburg-Rallis model. Then by applying such formula, the author proves a multiplicity formula of the Ginzburg-Rallis model for the supercuspidal representations. Using that multiplicity formula, the author proves the multiplicity one theorem for the Ginzburg-Rallis model over Vogan packets in the supercuspidal case.
Time-Like Graphical Models
Author: Tvrtko Tadić
Publisher: American Mathematical Soc.
ISBN: 147043685X
Category : Education
Languages : en
Pages : 184
Book Description
The author studies continuous processes indexed by a special family of graphs. Processes indexed by vertices of graphs are known as probabilistic graphical models. In 2011, Burdzy and Pal proposed a continuous version of graphical models indexed by graphs with an embedded time structure— so-called time-like graphs. The author extends the notion of time-like graphs and finds properties of processes indexed by them. In particular, the author solves the conjecture of uniqueness of the distribution for the process indexed by graphs with infinite number of vertices. The author provides a new result showing the stochastic heat equation as a limit of the sequence of natural Brownian motions on time-like graphs. In addition, the author's treatment of time-like graphical models reveals connections to Markov random fields, martingales indexed by directed sets and branching Markov processes.
Publisher: American Mathematical Soc.
ISBN: 147043685X
Category : Education
Languages : en
Pages : 184
Book Description
The author studies continuous processes indexed by a special family of graphs. Processes indexed by vertices of graphs are known as probabilistic graphical models. In 2011, Burdzy and Pal proposed a continuous version of graphical models indexed by graphs with an embedded time structure— so-called time-like graphs. The author extends the notion of time-like graphs and finds properties of processes indexed by them. In particular, the author solves the conjecture of uniqueness of the distribution for the process indexed by graphs with infinite number of vertices. The author provides a new result showing the stochastic heat equation as a limit of the sequence of natural Brownian motions on time-like graphs. In addition, the author's treatment of time-like graphical models reveals connections to Markov random fields, martingales indexed by directed sets and branching Markov processes.
Dimensions of Affine Deligne–Lusztig Varieties: A New Approach Via Labeled Folded Alcove Walks and Root Operators
Author: Elizabeth Milićević
Publisher: American Mathematical Soc.
ISBN: 1470436760
Category : Education
Languages : en
Pages : 114
Book Description
Let G be a reductive group over the field F=k((t)), where k is an algebraic closure of a finite field, and let W be the (extended) affine Weyl group of G. The associated affine Deligne–Lusztig varieties Xx(b), which are indexed by elements b∈G(F) and x∈W, were introduced by Rapoport. Basic questions about the varieties Xx(b) which have remained largely open include when they are nonempty, and if nonempty, their dimension. The authors use techniques inspired by geometric group theory and combinatorial representation theory to address these questions in the case that b is a pure translation, and so prove much of a sharpened version of a conjecture of Görtz, Haines, Kottwitz, and Reuman. The authors' approach is constructive and type-free, sheds new light on the reasons for existing results in the case that b is basic, and reveals new patterns. Since they work only in the standard apartment of the building for G(F), their results also hold in the p-adic context, where they formulate a definition of the dimension of a p-adic Deligne–Lusztig set. The authors present two immediate applications of their main results, to class polynomials of affine Hecke algebras and to affine reflection length.
Publisher: American Mathematical Soc.
ISBN: 1470436760
Category : Education
Languages : en
Pages : 114
Book Description
Let G be a reductive group over the field F=k((t)), where k is an algebraic closure of a finite field, and let W be the (extended) affine Weyl group of G. The associated affine Deligne–Lusztig varieties Xx(b), which are indexed by elements b∈G(F) and x∈W, were introduced by Rapoport. Basic questions about the varieties Xx(b) which have remained largely open include when they are nonempty, and if nonempty, their dimension. The authors use techniques inspired by geometric group theory and combinatorial representation theory to address these questions in the case that b is a pure translation, and so prove much of a sharpened version of a conjecture of Görtz, Haines, Kottwitz, and Reuman. The authors' approach is constructive and type-free, sheds new light on the reasons for existing results in the case that b is basic, and reveals new patterns. Since they work only in the standard apartment of the building for G(F), their results also hold in the p-adic context, where they formulate a definition of the dimension of a p-adic Deligne–Lusztig set. The authors present two immediate applications of their main results, to class polynomials of affine Hecke algebras and to affine reflection length.
Rigid Character Groups, Lubin-Tate Theory, and (φ,Γ)-Modules
Author: Laurent Berger
Publisher: American Mathematical Soc.
ISBN: 1470440733
Category : Education
Languages : en
Pages : 92
Book Description
The construction of the p-adic local Langlands correspondence for GL2(Qp) uses in an essential way Fontaine's theory of cyclotomic (φ,Γ)-modules. Here cyclotomic means that Γ=Gal(Qp(μp∞)/Qp) is the Galois group of the cyclotomic extension of Qp. In order to generalize the p-adic local Langlands correspondence to GL2(L), where L is a finite extension of Qp, it seems necessary to have at our disposal a theory of Lubin-Tate (φ,Γ)-modules. Such a generalization has been carried out, to some extent, by working over the p-adic open unit disk, endowed with the action of the endomorphisms of a Lubin-Tate group. The main idea of this article is to carry out a Lubin-Tate generalization of the theory of cyclotomic (φ,Γ)-modules in a different fashion. Instead of the p-adic open unit disk, the authors work over a character variety that parameterizes the locally L-analytic characters on oL. They study (φ,Γ)-modules in this setting and relate some of them to what was known previously.
Publisher: American Mathematical Soc.
ISBN: 1470440733
Category : Education
Languages : en
Pages : 92
Book Description
The construction of the p-adic local Langlands correspondence for GL2(Qp) uses in an essential way Fontaine's theory of cyclotomic (φ,Γ)-modules. Here cyclotomic means that Γ=Gal(Qp(μp∞)/Qp) is the Galois group of the cyclotomic extension of Qp. In order to generalize the p-adic local Langlands correspondence to GL2(L), where L is a finite extension of Qp, it seems necessary to have at our disposal a theory of Lubin-Tate (φ,Γ)-modules. Such a generalization has been carried out, to some extent, by working over the p-adic open unit disk, endowed with the action of the endomorphisms of a Lubin-Tate group. The main idea of this article is to carry out a Lubin-Tate generalization of the theory of cyclotomic (φ,Γ)-modules in a different fashion. Instead of the p-adic open unit disk, the authors work over a character variety that parameterizes the locally L-analytic characters on oL. They study (φ,Γ)-modules in this setting and relate some of them to what was known previously.
Subgroup Decomposition in Out(Fn)
Author: Michael Handel
Publisher: American Mathematical Soc.
ISBN: 1470441136
Category : Education
Languages : en
Pages : 290
Book Description
In this work the authors develop a decomposition theory for subgroups of Out(Fn) which generalizes the decomposition theory for individual elements of Out(Fn) found in the work of Bestvina, Feighn, and Handel, and which is analogous to the decomposition theory for subgroups of mapping class groups found in the work of Ivanov.
Publisher: American Mathematical Soc.
ISBN: 1470441136
Category : Education
Languages : en
Pages : 290
Book Description
In this work the authors develop a decomposition theory for subgroups of Out(Fn) which generalizes the decomposition theory for individual elements of Out(Fn) found in the work of Bestvina, Feighn, and Handel, and which is analogous to the decomposition theory for subgroups of mapping class groups found in the work of Ivanov.
Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces
Author: Luigi Ambrosio
Publisher: American Mathematical Soc.
ISBN: 1470439131
Category : Education
Languages : en
Pages : 134
Book Description
The aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces (X,d,m). On the geometric side, the authors' new approach takes into account suitable weighted action functionals which provide the natural modulus of K-convexity when one investigates the convexity properties of N-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, the authors' new approach uses the nonlinear diffusion semigroup induced by the N-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger's energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong CD∗(K,N) condition of Bacher-Sturm.
Publisher: American Mathematical Soc.
ISBN: 1470439131
Category : Education
Languages : en
Pages : 134
Book Description
The aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces (X,d,m). On the geometric side, the authors' new approach takes into account suitable weighted action functionals which provide the natural modulus of K-convexity when one investigates the convexity properties of N-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, the authors' new approach uses the nonlinear diffusion semigroup induced by the N-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger's energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong CD∗(K,N) condition of Bacher-Sturm.
The Triangle-Free Process and the Ramsey Number R(3,k)
Author: Gonzalo Fiz Pontiveros
Publisher: American Mathematical Soc.
ISBN: 1470440717
Category : Education
Languages : en
Pages : 138
Book Description
The areas of Ramsey theory and random graphs have been closely linked ever since Erdős's famous proof in 1947 that the “diagonal” Ramsey numbers R(k) grow exponentially in k. In the early 1990s, the triangle-free process was introduced as a model which might potentially provide good lower bounds for the “off-diagonal” Ramsey numbers R(3,k). In this model, edges of Kn are introduced one-by-one at random and added to the graph if they do not create a triangle; the resulting final (random) graph is denoted Gn,△. In 2009, Bohman succeeded in following this process for a positive fraction of its duration, and thus obtained a second proof of Kim's celebrated result that R(3,k)=Θ(k2/logk). In this paper the authors improve the results of both Bohman and Kim and follow the triangle-free process all the way to its asymptotic end.
Publisher: American Mathematical Soc.
ISBN: 1470440717
Category : Education
Languages : en
Pages : 138
Book Description
The areas of Ramsey theory and random graphs have been closely linked ever since Erdős's famous proof in 1947 that the “diagonal” Ramsey numbers R(k) grow exponentially in k. In the early 1990s, the triangle-free process was introduced as a model which might potentially provide good lower bounds for the “off-diagonal” Ramsey numbers R(3,k). In this model, edges of Kn are introduced one-by-one at random and added to the graph if they do not create a triangle; the resulting final (random) graph is denoted Gn,△. In 2009, Bohman succeeded in following this process for a positive fraction of its duration, and thus obtained a second proof of Kim's celebrated result that R(3,k)=Θ(k2/logk). In this paper the authors improve the results of both Bohman and Kim and follow the triangle-free process all the way to its asymptotic end.
Global Well-Posedness of High Dimensional Maxwell–Dirac for Small Critical Data
Author: Cristian Gavrus
Publisher: American Mathematical Soc.
ISBN: 147044111X
Category : Education
Languages : en
Pages : 106
Book Description
In this paper, the authors prove global well-posedness of the massless Maxwell–Dirac equation in the Coulomb gauge on R1+d(d≥4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell–Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell–Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Krieger-Sterbenz-Tataru, which says that the most difficult part of Maxwell–Dirac takes essentially the same form as Maxwell-Klein-Gordon.
Publisher: American Mathematical Soc.
ISBN: 147044111X
Category : Education
Languages : en
Pages : 106
Book Description
In this paper, the authors prove global well-posedness of the massless Maxwell–Dirac equation in the Coulomb gauge on R1+d(d≥4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell–Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell–Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Krieger-Sterbenz-Tataru, which says that the most difficult part of Maxwell–Dirac takes essentially the same form as Maxwell-Klein-Gordon.