Finite Element Simulation in Surface and Subsurface Hydrology

Finite Element Simulation in Surface and Subsurface Hydrology PDF Author: George F. Pinder
Publisher: Elsevier
ISBN: 1483270424
Category : Science
Languages : en
Pages : 308

Get Book Here

Book Description
Finite Element Simulation in Surface and Subsurface Hydrology provides an introduction to the finite element method and how the method is applied to problems in surface and subsurface hydrology. The book presents the basic concepts of the numerical methods and the finite element approach; applications to problems on groundwater flow and mass and energy transport; and applications to problems that involve surface water dynamics. Computational methods for the solution of differential equations; classification of partial differential equations; finite difference and weighted residual integral techniques; and The Galerkin finite element method are discussed as well. The text will be of value to engineers, hydrologists, and students in the field of engineering.

Finite Element Simulation in Surface and Subsurface Hydrology

Finite Element Simulation in Surface and Subsurface Hydrology PDF Author: George F. Pinder
Publisher: Elsevier
ISBN: 1483270424
Category : Science
Languages : en
Pages : 308

Get Book Here

Book Description
Finite Element Simulation in Surface and Subsurface Hydrology provides an introduction to the finite element method and how the method is applied to problems in surface and subsurface hydrology. The book presents the basic concepts of the numerical methods and the finite element approach; applications to problems on groundwater flow and mass and energy transport; and applications to problems that involve surface water dynamics. Computational methods for the solution of differential equations; classification of partial differential equations; finite difference and weighted residual integral techniques; and The Galerkin finite element method are discussed as well. The text will be of value to engineers, hydrologists, and students in the field of engineering.

Physical Basis for the Finite Element Method in Subsurface Hydrology

Physical Basis for the Finite Element Method in Subsurface Hydrology PDF Author: Miroljub Ignjat Milivojcevic
Publisher:
ISBN:
Category : Computer simulation
Languages : en
Pages : 0

Get Book Here

Book Description


Computational Subsurface Hydrology

Computational Subsurface Hydrology PDF Author: Yeh Gour-Tsyh
Publisher: Springer Science & Business Media
ISBN: 1475730381
Category : Science
Languages : en
Pages : 261

Get Book Here

Book Description
Computational Subsurface Hydrology: Fluid Flows offers practicing engineers and scientists a theoretical background, numerical methods, and computer codes for the modeling of fluid flows in subsurface media. It will also serve as a text for senior and graduate courses on fluid flows in subsurface media in disciplines such as civil and environmental engineering, agricultural engineering, geosciences, soil sciences, and chemical engineering. Computational Subsurface Hydrology: Fluid Flows presents a systematic derivation of governing equations and boundary conditions of subsurface fluid flow. It discusses a variety of numerical methods, expounds detailed procedures for constructing finite element methods, and describes precise implementation of computer codes as they are applied to subsurface flows. Four computer codes to simulate vertically integrated horizontal flows (FEWA), saturated flows with moving phreatic surfaces in three dimensions (3DFEWA), variably saturated flows in two dimensions (FEMWATER), and variable flows in three dimensions (3DFEMWATER) are attached to this book. These four computer codes are designed for generic applications to both research and practical problems. They could be used to simulate most of the practical, real-world field problems. If you would like a copy of the diskettes containing the four, basic general purpose computer codes referred to in Computational Subsurface Hydrology: Fluid Flows, please email Gour-Tsyh Yeh at the following address : [email protected]

Computational Subsurface Hydrology

Computational Subsurface Hydrology PDF Author: Gour-Tsyh (George) Yeh
Publisher: Springer Science & Business Media
ISBN: 1461543711
Category : Science
Languages : en
Pages : 356

Get Book Here

Book Description
Any numerical subsurface model is comprised of three components: a theoretical basis to translate our understanding phenomena into partial differential equations and boundary conditions, a numerical method to approximate these governing equations and implement the boundary conditions, and a computer implementation to generate a generic code for research as well as for practical applications. Computational Subsurface Hydrology: Reactions, Transport, and Fate is organized around these themes. The fundamental processes occurring in subsurface media are rigorously integrated into governing equations using the Reynolds transport theorem and interactions of these processes with the surrounding media are sophisticatedly cast into various types of boundary conditions using physical reasoning. A variety of numerical methods to deal with reactive chemical transport are covered in Computational Subsurface Hydrology: Reactions, Transport, and Fate with a particular emphasis on the adaptive local grid refinement and peak capture using the Lagrangian-Eulerian approach. The topics on coupled fluid flows and reactive chemical transport are unique contributions of this book. They serve as a reference for research as well as for practical applications with a computer code that can be purchased from the author. Four computer codes to simulate vertically integrated horizontal solute transport (LEMA), contaminant transport in moving phreatic aquifers in three dimensions (3DLEMA), solute transport in variably saturated flows in two dimensions (LEWASTE), and solute transport under variably saturated flows in three dimensions (3DLEWASTE) are covered. These four computer codes are designed for generic applications to both research and practical problems. They could be used to simulate most of the practical, real-world field problems. Reactive chemical transport and its coupling with fluid flows are unique features in this book. Theories, numerical implementations, and example problems of coupled reactive transport and flows in variably saturated media are presented. A generic computer code, HYDROGEOCHEM 3.0, is developed. A total of eight example problems are used to illustrate the application of the computational model. These problems are intended to serve as examples for setting up a variety of simulations that one may encounter in research and field-site applications. Computational Subsurface Hydrology: Reactions, Transport, and Fate offers practicing engineers and scientists a theoretical background, numerical methods, and computer codes for modeling contaminant transport in subsurface media. It also serves as a textbook for senior and graduate course on reactive chemical transport in subsurface media in disciplines such as civil and environmental engineering, agricultural engineering, geosciences, soil sciences, and chemical engineering. Computational Subsurface Hydrology: Reactions, Transport, and Fate presents a systematic derivation of governing equations and boundary conditions of subsurface contaminant transport as well as reaction-based geochemical and biochemical processes. It discusses a variety of numerical methods for moving sharp-front problems, expounds detail procedures of constructing Lagrangian-Eulerian finite element methods, and describes precise implementation of computer codes as they are applied to subsurface contaminant transport and biogeochemical reactions.

FINITE ELEMENT METHOD FOR SUBSURFACE HYDROLOGY USING A MIXED EXPLICIT-IMPLICIT SCHEME.

FINITE ELEMENT METHOD FOR SUBSURFACE HYDROLOGY USING A MIXED EXPLICIT-IMPLICIT SCHEME. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 62

Get Book Here

Book Description
The mixed explicit-implicit Galerkin finite element method developed previously by the authors is shown to be ideally suited for a wide class of problems arising in subsurface hydrology. These problems include confined saturated flow, unconfined flaw under free surface conditions subject to the Dupuit assumption, flow in aquifers which are partly confined and partly unconfined, axisymmetric flow to a well with storage, and flow in saturated-unsaturated soils. A single computer program, entitled FLUMP, can now handle all of these problems. The mixed explicit-implicit solution strategy employed in the program insures a high level of accuracy and computation efficiency in most cases. It eliminates many of the difficulties that groundwater hydrologists have been encountering in trying to simulate extensive aquifer systems by finite elements. Some of the outstanding features of this solution strategy include an automatic control of time step size, reclassification of nodes from explicit to implicit during execution, automatic adjustment of the implicit time weighting factor, and the treatment of boundary conditions and source terms as arbitrary functions of time of the state of the system. Five examples are presented to demonstrate the versatility and power of this new approach. A purely physical derivation of the finite element equations which does not rely on the Galerkin formalism is also included in one of the appendices.

The ADI of Finite Difference Simulation on Surface and Subsurface Hydrology

The ADI of Finite Difference Simulation on Surface and Subsurface Hydrology PDF Author: Yuan Cheng Yang
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages : 134

Get Book Here

Book Description


FEFLOW

FEFLOW PDF Author: Hans-Jörg G. Diersch
Publisher: Springer Science & Business Media
ISBN: 364238739X
Category : Science
Languages : en
Pages : 1018

Get Book Here

Book Description
FEFLOW is an acronym of Finite Element subsurface FLOW simulation system and solves the governing flow, mass and heat transport equations in porous and fractured media by a multidimensional finite element method for complex geometric and parametric situations including variable fluid density, variable saturation, free surface(s), multispecies reaction kinetics, non-isothermal flow and multidiffusive effects. FEFLOW comprises theoretical work, modeling experiences and simulation practice from a period of about 40 years. In this light, the main objective of the present book is to share this achieved level of modeling with all required details of the physical and numerical background with the reader. The book is intended to put advanced theoretical and numerical methods into the hands of modeling practitioners and scientists. It starts with a more general theory for all relevant flow and transport phenomena on the basis of the continuum approach, systematically develops the basic framework for important classes of problems (e.g., multiphase/multispecies non-isothermal flow and transport phenomena, discrete features, aquifer-averaged equations, geothermal processes), introduces finite-element techniques for solving the basic balance equations, in detail discusses advanced numerical algorithms for the resulting nonlinear and linear problems and completes with a number of benchmarks, applications and exercises to illustrate the different types of problems and ways to tackle them successfully (e.g., flow and seepage problems, unsaturated-saturated flow, advective-diffusion transport, saltwater intrusion, geothermal and thermohaline flow).

Finite Element Modeling of Environmental Problems

Finite Element Modeling of Environmental Problems PDF Author: Graham F. Carey
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 400

Get Book Here

Book Description
Because of its ability to treat both regions with irregular boundaries and with different material types, the finite element method is increasingly being applied to surface water and soil transport problems and this is the focus of the present volume. The method is ideally suited to simulation of complex real applications for resolving environmental issues and for conducting environmental impact studies. The present volume focuses on the two main areas of environmental modeling with finite elements and the supporting finite element methodology. Five chapters are devoted to ocean and coastal engineering, one to other surface water problems, several to ground water modeling and contaminant transport, including radioactive waste, and the remainder to mathematical models, particularly for mixed finite elements and nonlinear problems. Environmental problems are of increasing topicality and importance today. Special care has been taken in organizing and editing the material to form the right combination of modeling, methodology, and applications studies to form a cohesive treatment appropriate for a graduate course or seminar on the subject. It is aimed in particular at engineers working in computational environmental fluid mechanics and transport processes.

Computational Subsurface Hydrology

Computational Subsurface Hydrology PDF Author: Yeh Gour-Tsyh
Publisher: Springer
ISBN: 9780792384908
Category : Science
Languages : en
Pages : 277

Get Book Here

Book Description
Computational Subsurface Hydrology: Fluid Flows offers practicing engineers and scientists a theoretical background, numerical methods, and computer codes for the modeling of fluid flows in subsurface media. It will also serve as a text for senior and graduate courses on fluid flows in subsurface media in disciplines such as civil and environmental engineering, agricultural engineering, geosciences, soil sciences, and chemical engineering. Computational Subsurface Hydrology: Fluid Flows presents a systematic derivation of governing equations and boundary conditions of subsurface fluid flow. It discusses a variety of numerical methods, expounds detailed procedures for constructing finite element methods, and describes precise implementation of computer codes as they are applied to subsurface flows. Four computer codes to simulate vertically integrated horizontal flows (FEWA), saturated flows with moving phreatic surfaces in three dimensions (3DFEWA), variably saturated flows in two dimensions (FEMWATER), and variable flows in three dimensions (3DFEMWATER) are attached to this book. These four computer codes are designed for generic applications to both research and practical problems. They could be used to simulate most of the practical, real-world field problems. If you would like a copy of the diskettes containing the four, basic general purpose computer codes referred to in Computational Subsurface Hydrology: Fluid Flows, please email Gour-Tsyh Yeh at the following address : [email protected]

Computational Methods in Subsurface Flow

Computational Methods in Subsurface Flow PDF Author: Peter S. Huyakorn
Publisher: Academic Press
ISBN: 0323137970
Category : Science
Languages : en
Pages : 488

Get Book Here

Book Description
Computational Methods in Subsurface Flow explores the application of all of the commonly encountered computational methods to subsurface problems. Among the problems considered in this book are groundwater flow and contaminant transport; moisture movement in variably saturated soils; land subsidence and similar flow and deformation processes in soil and rock mechanics; and oil and geothermal reservoir engineering. This book is organized into 10 chapters and begins with an introduction to partial differential and various solution approaches used in subsurface flow. The discussion then shifts to the fundamental theory of the finite element method, with emphasis on the Galerkin finite element method and how it can be used to solve a wide range of subsurface problems. The subjects treated range from simple problems of saturated groundwater flow to more complex ones of moisture movement and multiphase flow in petroleum reservoirs. The chapters that follow focus on fluid flow and mechanical deformation of conventional and fractured porous media; point and subdomain collocation techniques and the boundary element technique; and the applications of finite difference techniques to single- and multiphase flow and solute transport. The final chapter is devoted to other alternative numerical methods that are based on combinations of the standard finite difference approach and classical mathematics. This book is intended for senior undergraduate and graduate students in geoscience and engineering, as well as for professional groundwater hydrologists, engineers, and research scientists who want to solve or model subsurface problems using numerical techniques.