Author: Ever J. Barbero
Publisher: CRC Press
ISBN: 1466516631
Category : Mathematics
Languages : en
Pages : 445
Book Description
Developed from the author's graduate-level course on advanced mechanics of composite materials, Finite Element Analysis of Composite Materials with Abaqus shows how powerful finite element tools address practical problems in the structural analysis of composites. Unlike other texts, this one takes the theory to a hands-on level by actually solving
Finite Element Analysis of Composite Materials using AbaqusTM
Author: Ever J. Barbero
Publisher: CRC Press
ISBN: 1466516631
Category : Mathematics
Languages : en
Pages : 445
Book Description
Developed from the author's graduate-level course on advanced mechanics of composite materials, Finite Element Analysis of Composite Materials with Abaqus shows how powerful finite element tools address practical problems in the structural analysis of composites. Unlike other texts, this one takes the theory to a hands-on level by actually solving
Publisher: CRC Press
ISBN: 1466516631
Category : Mathematics
Languages : en
Pages : 445
Book Description
Developed from the author's graduate-level course on advanced mechanics of composite materials, Finite Element Analysis of Composite Materials with Abaqus shows how powerful finite element tools address practical problems in the structural analysis of composites. Unlike other texts, this one takes the theory to a hands-on level by actually solving
Finite Element Modelling of Composite Materials and Structures
Author: F L Matthews
Publisher: Elsevier
ISBN: 1855738929
Category : Technology & Engineering
Languages : en
Pages : 225
Book Description
Finite element modelling of composite materials and structures provides an introduction to a technique which is increasingly being used as an analytical tool for composite materials.The text is presented in four parts: - Part one sets the scene and reviews the fundamentals of composite materials together with the basic nature of FRP and its constituents. Two-dimensional stress-strain is covered, as is laminated plated theory and its limitations. - Part two reviews the basic principles of FE analysis, starting with underlying theoretical issues and going on to show how elements are derived, a model is generated and results are processed. - Part three builds on the basics of FE analysis and considers the particular issues that arise in applying finite elements to composites, especially to the layered nature of the material. - Part four deals with the application of FE to FRP composites, presenting analytical models alongside FE representations. Specific issues addressed include interlaminar stresses, fracture delamination, joints and fatigue.This book is invaluable for students of materials science and engineering, and for engineers and others wishing to expand their knowledge of structural analysis. - Covers important work on finite element analysis of composite material performance - Based on material developed for an MSc course at Imperial College, London, UK - Covers particular problems such as holes, free edges with FE results compared with experimental data and classical analysis
Publisher: Elsevier
ISBN: 1855738929
Category : Technology & Engineering
Languages : en
Pages : 225
Book Description
Finite element modelling of composite materials and structures provides an introduction to a technique which is increasingly being used as an analytical tool for composite materials.The text is presented in four parts: - Part one sets the scene and reviews the fundamentals of composite materials together with the basic nature of FRP and its constituents. Two-dimensional stress-strain is covered, as is laminated plated theory and its limitations. - Part two reviews the basic principles of FE analysis, starting with underlying theoretical issues and going on to show how elements are derived, a model is generated and results are processed. - Part three builds on the basics of FE analysis and considers the particular issues that arise in applying finite elements to composites, especially to the layered nature of the material. - Part four deals with the application of FE to FRP composites, presenting analytical models alongside FE representations. Specific issues addressed include interlaminar stresses, fracture delamination, joints and fatigue.This book is invaluable for students of materials science and engineering, and for engineers and others wishing to expand their knowledge of structural analysis. - Covers important work on finite element analysis of composite material performance - Based on material developed for an MSc course at Imperial College, London, UK - Covers particular problems such as holes, free edges with FE results compared with experimental data and classical analysis
Finite Element Analysis of Composite Laminates
Author: O.O. Ochoa
Publisher: Springer Science & Business Media
ISBN: 9401579954
Category : Science
Languages : en
Pages : 222
Book Description
Composite materials are increasingly used in aerospace, underwater, and automotive structures. To take advantage of the full potential of composite materials, structural analysts and designers must have accurate mathematical models and design methods at their disposal. The objective of this monograph is to present the laminated plate theories and their finite element models to study the deformation, strength and failure of composite structures. Emphasis is placed on engineering aspects, such as the analytical descriptions, effective analysis tools, modeling of physical features, and evaluation of approaches used to formulate and predict the response of composite structures. The first chapter presents an overview of the text. Chapter 2 is devoted to the introduction of the definitions and terminology used in composite materials and structures. Anisotropic constitutive relations and Iaminate plate theories are also reviewed. Finite element models of laminated composite plates are presented in Chapter 3. Numerical evaluation of element coefficient matrices, post-computation of strains and stresses, and sample examples of laminated plates in bending and vibration are discussed. Chapter 4 introduces damage and failure criteria in composite laminates. Finally, Chapter 5 is dedicated to case studies involving various aspects and types of composite structures. Joints, cutouts, woven composites, environmental effects, postbuckling response and failure of composite laminates are discussed by considering specific examples.
Publisher: Springer Science & Business Media
ISBN: 9401579954
Category : Science
Languages : en
Pages : 222
Book Description
Composite materials are increasingly used in aerospace, underwater, and automotive structures. To take advantage of the full potential of composite materials, structural analysts and designers must have accurate mathematical models and design methods at their disposal. The objective of this monograph is to present the laminated plate theories and their finite element models to study the deformation, strength and failure of composite structures. Emphasis is placed on engineering aspects, such as the analytical descriptions, effective analysis tools, modeling of physical features, and evaluation of approaches used to formulate and predict the response of composite structures. The first chapter presents an overview of the text. Chapter 2 is devoted to the introduction of the definitions and terminology used in composite materials and structures. Anisotropic constitutive relations and Iaminate plate theories are also reviewed. Finite element models of laminated composite plates are presented in Chapter 3. Numerical evaluation of element coefficient matrices, post-computation of strains and stresses, and sample examples of laminated plates in bending and vibration are discussed. Chapter 4 introduces damage and failure criteria in composite laminates. Finally, Chapter 5 is dedicated to case studies involving various aspects and types of composite structures. Joints, cutouts, woven composites, environmental effects, postbuckling response and failure of composite laminates are discussed by considering specific examples.
Finite Element Analysis for Composite Structures
Author: L.T. Tenek
Publisher: Springer Science & Business Media
ISBN: 9401590443
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This book is an adventure into the computer analysis of three dimensional composite structures using the finite element method (FEM). It is designed for Universities, for advanced undergraduates, for graduates, for researchers, and for practising engineers in industry. The text advances gradually from the analysis of simple beams to arbitrary anisotropic and composite plates and shells; it treats both linear and nonlinear behavior. Once the basic philosophy of the method is understood, the reader may expand its application and modify the computer programs to suit particular needs. The book arose from four years research at the University of Stuttgart, Germany. We present the theory and computer programs concisely and systematically so that they can be used both for teaching and applications. We have tried to make the book simple and clear, and to show the underlying physical and mathematical ideas. The FEM has been in existence for more than 50 years. One of the authors, John Argyris, invented this technique in World War II in the course of the check on the analysis of the swept back wing of the twin engined Meteor Jet Fighter. In this work, he also consistently applied matrix calculus and introduced triangular membrane elements in conjunction with two new definitions of triangular stresses and strains which are now known as the component and total measures. In fact, he was responsible for the original formulation of the matrix force and displacement methods, the forerunners of the FEM.
Publisher: Springer Science & Business Media
ISBN: 9401590443
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This book is an adventure into the computer analysis of three dimensional composite structures using the finite element method (FEM). It is designed for Universities, for advanced undergraduates, for graduates, for researchers, and for practising engineers in industry. The text advances gradually from the analysis of simple beams to arbitrary anisotropic and composite plates and shells; it treats both linear and nonlinear behavior. Once the basic philosophy of the method is understood, the reader may expand its application and modify the computer programs to suit particular needs. The book arose from four years research at the University of Stuttgart, Germany. We present the theory and computer programs concisely and systematically so that they can be used both for teaching and applications. We have tried to make the book simple and clear, and to show the underlying physical and mathematical ideas. The FEM has been in existence for more than 50 years. One of the authors, John Argyris, invented this technique in World War II in the course of the check on the analysis of the swept back wing of the twin engined Meteor Jet Fighter. In this work, he also consistently applied matrix calculus and introduced triangular membrane elements in conjunction with two new definitions of triangular stresses and strains which are now known as the component and total measures. In fact, he was responsible for the original formulation of the matrix force and displacement methods, the forerunners of the FEM.
Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams
Author: Xiaoshan Lin
Publisher: Woodhead Publishing
ISBN: 0128169001
Category : Technology & Engineering
Languages : en
Pages : 258
Book Description
Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams presents advanced methods and techniques for the analysis of composite and FRP reinforced concrete beams. The title introduces detailed numerical modeling methods and the modeling of the structural behavior of composite beams, including critical interfacial bond-slip behavior. It covers a new family of composite beam elements developed by the authors. Other sections cover nonlinear finite element analysis procedures and the numerical modeling techniques used in commercial finite element software that will be of particular interest to engineers and researchers executing numerical simulations. - Gives advanced methods and techniques for the analysis of composite and fiber Reinforced Plastic (FRP) and reinforced concrete beams - Presents new composite beam elements developed by the authors - Introduces numerical techniques for the development of effective finite element models using commercial software - Discusses the critical issues encountered in structural analysis - Maintains a clear focus on advanced numerical modeling
Publisher: Woodhead Publishing
ISBN: 0128169001
Category : Technology & Engineering
Languages : en
Pages : 258
Book Description
Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams presents advanced methods and techniques for the analysis of composite and FRP reinforced concrete beams. The title introduces detailed numerical modeling methods and the modeling of the structural behavior of composite beams, including critical interfacial bond-slip behavior. It covers a new family of composite beam elements developed by the authors. Other sections cover nonlinear finite element analysis procedures and the numerical modeling techniques used in commercial finite element software that will be of particular interest to engineers and researchers executing numerical simulations. - Gives advanced methods and techniques for the analysis of composite and fiber Reinforced Plastic (FRP) and reinforced concrete beams - Presents new composite beam elements developed by the authors - Introduces numerical techniques for the development of effective finite element models using commercial software - Discusses the critical issues encountered in structural analysis - Maintains a clear focus on advanced numerical modeling
Finite Element Analysis of Composite Materials
Author: Ever J. Barbero
Publisher: CRC Press
ISBN: 1420054341
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Designing structures using composite materials poses unique challenges due especially to the need for concurrent design of both material and structure. Students are faced with two options: textbooks that teach the theory of advanced mechanics of composites, but lack computational examples of advanced analysis; and books on finite element analysis that may or may not demonstrate very limited applications to composites. But now there is third option that makes the other two obsolete: Ever J. Barbero's Finite Element Analysis of Composite Materials. By layering detailed theoretical and conceptual discussions with fully developed examples, this text supplies the missing link between theory and implementation. In-depth discussions cover all of the major aspects of advanced analysis, including three-dimensional effects, viscoelasticity, edge effects, elastic instability, damage, and delamination. More than 50 complete examples using mainly ANSYSTM, but also including some use of MATLABĀ®, demonstrate how to use the concepts to formulate and execute finite element analyses and how to interpret the results in engineering terms. Additionally, the source code for each example is available for download online. Cementing applied computational and analytical experience to a firm foundation of basic concepts and theory, Finite Element Analysis of Composite Materials offers a modern, practical, and versatile classroom tool for today's engineering classroom.
Publisher: CRC Press
ISBN: 1420054341
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Designing structures using composite materials poses unique challenges due especially to the need for concurrent design of both material and structure. Students are faced with two options: textbooks that teach the theory of advanced mechanics of composites, but lack computational examples of advanced analysis; and books on finite element analysis that may or may not demonstrate very limited applications to composites. But now there is third option that makes the other two obsolete: Ever J. Barbero's Finite Element Analysis of Composite Materials. By layering detailed theoretical and conceptual discussions with fully developed examples, this text supplies the missing link between theory and implementation. In-depth discussions cover all of the major aspects of advanced analysis, including three-dimensional effects, viscoelasticity, edge effects, elastic instability, damage, and delamination. More than 50 complete examples using mainly ANSYSTM, but also including some use of MATLABĀ®, demonstrate how to use the concepts to formulate and execute finite element analyses and how to interpret the results in engineering terms. Additionally, the source code for each example is available for download online. Cementing applied computational and analytical experience to a firm foundation of basic concepts and theory, Finite Element Analysis of Composite Materials offers a modern, practical, and versatile classroom tool for today's engineering classroom.
Damage Modeling of Composite Structures
Author: Pengfei Liu
Publisher: Elsevier
ISBN: 0128209631
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
Damage Modeling of Composite Structures: Strength, Fracture, and Finite Element Analysis provides readers with a fundamental overview of the mechanics of composite materials, along with an outline of an array of modeling and numerical techniques used to analyze damage, failure mechanisms and safety tolerance. Strength prediction and finite element analysis of laminated composite structures are both covered, as are modeling techniques for delaminated composites under compression and shear. Viscoelastic cohesive/friction coupled model and finite element analysis for delamination analysis of composites under shear and for laminates under low-velocity impact are all covered at length. A concluding chapter discusses multiscale damage models and finite element analysis of composite structures. Integrates intralaminar damage and interlaminar delamination under different load patterns, covering intralaminar damage constitutive models, failure criteria, damage evolution laws, and virtual crack closure techniques Discusses numerical techniques for progressive failure analysis and modeling, as well as numerical convergence and mesh sensitivity, thus allowing for more accurate modeling Features models and methods that can be seamlessly extended to analyze failure mechanisms and safety tolerance of composites under more complex loads, and in more extreme environments Demonstrates applications of damage models and numerical methods
Publisher: Elsevier
ISBN: 0128209631
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
Damage Modeling of Composite Structures: Strength, Fracture, and Finite Element Analysis provides readers with a fundamental overview of the mechanics of composite materials, along with an outline of an array of modeling and numerical techniques used to analyze damage, failure mechanisms and safety tolerance. Strength prediction and finite element analysis of laminated composite structures are both covered, as are modeling techniques for delaminated composites under compression and shear. Viscoelastic cohesive/friction coupled model and finite element analysis for delamination analysis of composites under shear and for laminates under low-velocity impact are all covered at length. A concluding chapter discusses multiscale damage models and finite element analysis of composite structures. Integrates intralaminar damage and interlaminar delamination under different load patterns, covering intralaminar damage constitutive models, failure criteria, damage evolution laws, and virtual crack closure techniques Discusses numerical techniques for progressive failure analysis and modeling, as well as numerical convergence and mesh sensitivity, thus allowing for more accurate modeling Features models and methods that can be seamlessly extended to analyze failure mechanisms and safety tolerance of composites under more complex loads, and in more extreme environments Demonstrates applications of damage models and numerical methods
Analysis of Composite Materials
Author: Mehmet Ali Arslan
Publisher:
ISBN: 9780999200506
Category :
Languages : en
Pages : 426
Book Description
Analysis of Composite Materials - Application with ANSYS is truly an extraordinary book written with the true commitment of filling up the huge experience/knowledge gap between the theory and application of composites to tackle real-life engineering problems with success. This book teaches students both practical/effective use of analytical formulas and step by step computer-based problem solutions using applied finite element analysis. For this purpose, this book is specially designed as a reference-analysis book for mechanical, aeronautical, mechatronics, biomedical and civil engineering students who are focusing on stress/strain, heat transfer analysis, and vibration characteristics of the composite structures of their interest.
Publisher:
ISBN: 9780999200506
Category :
Languages : en
Pages : 426
Book Description
Analysis of Composite Materials - Application with ANSYS is truly an extraordinary book written with the true commitment of filling up the huge experience/knowledge gap between the theory and application of composites to tackle real-life engineering problems with success. This book teaches students both practical/effective use of analytical formulas and step by step computer-based problem solutions using applied finite element analysis. For this purpose, this book is specially designed as a reference-analysis book for mechanical, aeronautical, mechatronics, biomedical and civil engineering students who are focusing on stress/strain, heat transfer analysis, and vibration characteristics of the composite structures of their interest.
Composites Forming Technologies
Author: A C Long
Publisher: Elsevier
ISBN: 1845692535
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
Composites are versatile engineered materials composed of two or more constituent materials which, when combined, lead to improved properties over the individual components whilst remaining separate on a macroscopic level. Due to their versatility, composite materials are used in a variety of areas ranging from healthcare and civil engineering to spacecraft technology. Composites forming technologies reviews the wealth of research in forming high-quality composite materials.The book begins with a concise explanation of the forming mechanisms and characterisation for composites, as well as covering modelling and analysis of forming techniques. Further chapters discuss the testing and simulation of composite materials forming. The book also considers forming technologies for various composite material forms including thermoset and thermoplastic prepreg, moulding compounds and composite/metal laminates.With its distinguished editor and array of international contributors, Composites forming technologies is an essential reference for engineers, researchers and academics involved with the production and use of composite materials. - Reviews the wealth of research in forming high-quality composite materials - Includes a concise explanation of the forming mechanisms and charaterisation for composites - Considers forming technologies for various composite material forms
Publisher: Elsevier
ISBN: 1845692535
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
Composites are versatile engineered materials composed of two or more constituent materials which, when combined, lead to improved properties over the individual components whilst remaining separate on a macroscopic level. Due to their versatility, composite materials are used in a variety of areas ranging from healthcare and civil engineering to spacecraft technology. Composites forming technologies reviews the wealth of research in forming high-quality composite materials.The book begins with a concise explanation of the forming mechanisms and characterisation for composites, as well as covering modelling and analysis of forming techniques. Further chapters discuss the testing and simulation of composite materials forming. The book also considers forming technologies for various composite material forms including thermoset and thermoplastic prepreg, moulding compounds and composite/metal laminates.With its distinguished editor and array of international contributors, Composites forming technologies is an essential reference for engineers, researchers and academics involved with the production and use of composite materials. - Reviews the wealth of research in forming high-quality composite materials - Includes a concise explanation of the forming mechanisms and charaterisation for composites - Considers forming technologies for various composite material forms
Hybrid Finite Element Method for Stress Analysis of Laminated Composites
Author: Suong Van Hoa
Publisher: Springer Science & Business Media
ISBN: 9780792381365
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
This book has one single purpose: to present the development of the partial hybrid finite element method for the stress analysis of laminated composite structures. The reason for this presentation is because the authors believe that partial hybrid finite element method is more efficient that the displacement based finite element method for the stress analysis oflaminated composites. In fact, the examples in chapter 5 of this book show that the partial hybrid finite element method is about 5 times more efficient than the displacement based finite element method. Since there is a great need for accurate and efficient calculation of interlaminar stresses for the design using composites, the partial hybrid finite method does provide one possible solution. Hybrid finite method has been in existence since 1964 and a significant amount of work has been done on the topic. However, the authors are not aware of any systematic piece of literature that gives a detailed presentation of the method. Chapters of the displacement finite element method and the evolution 1 and 2 present a sununary of the hybrid finite element method. Hopefully, these two chapters can provide the readers with an appreciation for the difference between the displacement finite element method and the hybrid finite element. It also should prepare the readers for the introduction of partial hybrid finite element method presented in chapter 3.
Publisher: Springer Science & Business Media
ISBN: 9780792381365
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
This book has one single purpose: to present the development of the partial hybrid finite element method for the stress analysis of laminated composite structures. The reason for this presentation is because the authors believe that partial hybrid finite element method is more efficient that the displacement based finite element method for the stress analysis oflaminated composites. In fact, the examples in chapter 5 of this book show that the partial hybrid finite element method is about 5 times more efficient than the displacement based finite element method. Since there is a great need for accurate and efficient calculation of interlaminar stresses for the design using composites, the partial hybrid finite method does provide one possible solution. Hybrid finite method has been in existence since 1964 and a significant amount of work has been done on the topic. However, the authors are not aware of any systematic piece of literature that gives a detailed presentation of the method. Chapters of the displacement finite element method and the evolution 1 and 2 present a sununary of the hybrid finite element method. Hopefully, these two chapters can provide the readers with an appreciation for the difference between the displacement finite element method and the hybrid finite element. It also should prepare the readers for the introduction of partial hybrid finite element method presented in chapter 3.