Film cooling on the pressure surface of a turbine vane

Film cooling on the pressure surface of a turbine vane PDF Author: James W. Gauntner
Publisher:
ISBN:
Category : Gas-turbines
Languages : en
Pages : 22

Get Book Here

Book Description

Film cooling on the pressure surface of a turbine vane

Film cooling on the pressure surface of a turbine vane PDF Author: James W. Gauntner
Publisher:
ISBN:
Category : Gas-turbines
Languages : en
Pages : 22

Get Book Here

Book Description


Effect of Surface Pressure Distribution of Gas Turbine Vane on Film Cooling

Effect of Surface Pressure Distribution of Gas Turbine Vane on Film Cooling PDF Author: Takafumi Nakahara
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description


An Adverse Effect of Film Cooling on the Suction Surface of a Turbine Vane

An Adverse Effect of Film Cooling on the Suction Surface of a Turbine Vane PDF Author: Herbert J. Gladden
Publisher:
ISBN:
Category : Turbines
Languages : en
Pages : 34

Get Book Here

Book Description


Comparison of Cooling Effectiveness of Turbine Vanes with and Without Film Cooling

Comparison of Cooling Effectiveness of Turbine Vanes with and Without Film Cooling PDF Author:
Publisher:
ISBN:
Category : Aircraft gas-turbines
Languages : en
Pages : 28

Get Book Here

Book Description


The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer

The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781723439759
Category :
Languages : en
Pages : 178

Get Book Here

Book Description
The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils. Hylton, L. D. and Nirmalan, V. and Sultanian, B. K. and Kaufman, R. M. Unspecified Center EQUIPMENT SPECIFICATIONS; FILM COOLING; HEAT TRANSFER; LEADING EDGES; STRUCTURAL DESIGN; VANES; AIRCRAFT ENGINES; CASCADE FLOW; DATA PROCESSING; GAS TURBINES; HIGH TEMPERATURE; PARAMETERIZATION; TWO DIMENSIONAL FLOW...

The Influence of Film Cooling and Inlet Temperature Profile on Heat Transfer for the Vane Row of a 1-1/2 Stage Transonic High-pressure Turbine

The Influence of Film Cooling and Inlet Temperature Profile on Heat Transfer for the Vane Row of a 1-1/2 Stage Transonic High-pressure Turbine PDF Author: Harika Senem Kahveci
Publisher:
ISBN:
Category :
Languages : en
Pages : 269

Get Book Here

Book Description
Abstract: The goal of this research was to establish an extensive database for typical engine hardware with a film-cooled first stage vane, which represents the foundation for future turbomachinery film cooling modeling and component heat transfer studies. Until this time, such a database was not available within the gas turbine industry. Accordingly, the study focuses on determination of the local heat flux for the airfoil and endwall surfaces of the vane row of a fully-cooled turbine stage. The measurements were performed at the Ohio State University Gas Turbine Laboratory using the Turbine Test Facility. The full-scale rotating 1 and 1/2 turbine stage is operated at the proper corrected engine design conditions: Flow Function (FF), corrected speed, stage Pressure Ratio (PR), and temperature ratios of gas to wall and gas to coolant. The primary measurements of temperature, pressure, and heat flux are repeated for different vane inlet temperature profiles and different vane cooling flows to establish an understanding of the influence of film cooling on local heat transfer. Double-sided Kapton heat-flux gauges are used for heat-flux measurements at different span locations along the airfoil surfaces and along the inner endwall. The cooling scheme consists of numerous cooling holes located on the endwalls, at the airfoil leading edge, on the airfoil pressure and suction surfaces, and at the trailing edge, resulting in a fully cooled first stage vane. The unique film-cooled endwall heat transfer data demonstrated in contour plots reveals insight to the complex flow behavior that is dominant in this region, which becomes even more complicated with the addition of coolant. Varying profile shapes resulted in significant heat transfer variations in a growing fashion towards the trailing edge region, which increased in magnitude when there is no coolant supply. The largest cooling effect is observed on 5% span pressure surface and at the inner endwall region. Heat transfer decreases from tip towards hub with addition of cooling. However, a similar decrease is not observed at the inner endwall region by doing so, which suggests excess coolant once beyond an optimum blowing ratio. Cooling flow rate and temperature profile shape affect the distributions on the airfoil surface very similarly, the latter observed more clearly at the endwall region. The vane outer cooling effect is comparable to the combined coolant effect at all surfaces, while no impact of purge flow is observed. Aligning the hot streaks with the vane leading edge lowered heat transfer compared to mid-passage alignment at the mid-span suction surface and through the endwall passage, and increased it at the endwall exit, while the pressure surface is found to be insensitive to this switch. Comparison with a previous research program with the un-cooled version of the vane gave good agreement on the pressure surface and at the endwall, but significantly lower heat transfer on the suction surface due to ingestion of the hot flow through the cooling holes when there is no cooling.

Turbine Vane Coolant Flow Variations and Calculated Effects on Metal Temperatures

Turbine Vane Coolant Flow Variations and Calculated Effects on Metal Temperatures PDF Author: Frederick C. Yeh
Publisher:
ISBN:
Category : Aircraft gas-turbines
Languages : en
Pages : 22

Get Book Here

Book Description


Coolant Pressure and Flow Distribution Through an Air-cooled Vane for a High Temperature Gas Turbine

Coolant Pressure and Flow Distribution Through an Air-cooled Vane for a High Temperature Gas Turbine PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 52

Get Book Here

Book Description


Prediction of Film Cooling on Gas Turbine Airfoils

Prediction of Film Cooling on Gas Turbine Airfoils PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 34

Get Book Here

Book Description


Cyclic Stress Analysis of an Air-cooled Turbine Vane

Cyclic Stress Analysis of an Air-cooled Turbine Vane PDF Author: Albert Kaufman
Publisher:
ISBN:
Category : Aircraft gas-turbines
Languages : en
Pages : 28

Get Book Here

Book Description