Author: Robert Gomer
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 216
Book Description
Market: Students and researchers in vacuum and surface science, microscopy, and semiconductor physics. This definitive work was based on four lectures presented at Harvard University in 1958. When it was written, field emission was one of the few techniques available for surface studies and the attainment of ultra-high vacuum was a little-known art. Though more sophisticated treatments have since been developed, Gomer's pioneering work remains valid to this day.
Field Emission and Field Ionization
Author: Robert Gomer
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 216
Book Description
Market: Students and researchers in vacuum and surface science, microscopy, and semiconductor physics. This definitive work was based on four lectures presented at Harvard University in 1958. When it was written, field emission was one of the few techniques available for surface studies and the attainment of ultra-high vacuum was a little-known art. Though more sophisticated treatments have since been developed, Gomer's pioneering work remains valid to this day.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 216
Book Description
Market: Students and researchers in vacuum and surface science, microscopy, and semiconductor physics. This definitive work was based on four lectures presented at Harvard University in 1958. When it was written, field emission was one of the few techniques available for surface studies and the attainment of ultra-high vacuum was a little-known art. Though more sophisticated treatments have since been developed, Gomer's pioneering work remains valid to this day.
Field Ionization Mass Spectrometry
Author: Hans-D. Beckey
Publisher:
ISBN:
Category : Field desorption mass spectrometry
Languages : en
Pages : 376
Book Description
Field Ionization Mass Spectrometry focuses on developments in field ionization (FI) mass spectrometry and describes its applications in physical chemistry, with emphasis on mass spectrometric problems. Physico-chemical problems as well as problems of chemical analysis are considered based on issues such as the probability of field ionization; field dissociation and charge distribution; kinetics of ion decomposition in high fields; negative ions; surface diffusion; activation of FI emitters; and elucidation of the structures of organic compounds. This book is comprised of four chapters and beg.
Publisher:
ISBN:
Category : Field desorption mass spectrometry
Languages : en
Pages : 376
Book Description
Field Ionization Mass Spectrometry focuses on developments in field ionization (FI) mass spectrometry and describes its applications in physical chemistry, with emphasis on mass spectrometric problems. Physico-chemical problems as well as problems of chemical analysis are considered based on issues such as the probability of field ionization; field dissociation and charge distribution; kinetics of ion decomposition in high fields; negative ions; surface diffusion; activation of FI emitters; and elucidation of the structures of organic compounds. This book is comprised of four chapters and beg.
Physics of Carbon Nanotube Devices
Author: Francois Leonard
Publisher: William Andrew
ISBN: 0815519680
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
Possibly the most impactful material in the nanotechnology arena, carbon nanotubes have spurred a tremendous amount of scientific research and development. Their superior mechanical and chemical robustness makes them easily manipulable and allows for the assembly of various types of devices, including electronic, electromechanical, opto-electronic and sensing devices.In the field of nanotube devices, however, concepts that describe the properties of conventional devices do not apply. Carbon nanotube devices behave much differently from those using traditional materials, and offer entirely new functionality. This book – designed for researchers, engineers and graduate students alike – bridges the experimental and theoretical aspects of carbon nanotube devices. It emphasizes and explains the underlying physics that govern their working principles, including applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. Many of the aspects discussed here differ significantly from those learned in books or traditional materials, and are essential for the future development of carbon nanotube technology.• Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles • Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. • Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. • Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology.* Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles * Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing.* Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission* Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology.
Publisher: William Andrew
ISBN: 0815519680
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
Possibly the most impactful material in the nanotechnology arena, carbon nanotubes have spurred a tremendous amount of scientific research and development. Their superior mechanical and chemical robustness makes them easily manipulable and allows for the assembly of various types of devices, including electronic, electromechanical, opto-electronic and sensing devices.In the field of nanotube devices, however, concepts that describe the properties of conventional devices do not apply. Carbon nanotube devices behave much differently from those using traditional materials, and offer entirely new functionality. This book – designed for researchers, engineers and graduate students alike – bridges the experimental and theoretical aspects of carbon nanotube devices. It emphasizes and explains the underlying physics that govern their working principles, including applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. Many of the aspects discussed here differ significantly from those learned in books or traditional materials, and are essential for the future development of carbon nanotube technology.• Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles • Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. • Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. • Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology.* Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles * Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing.* Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission* Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology.
Carbon Nanotube and Related Field Emitters
Author: Yahachi Saito
Publisher: John Wiley & Sons
ISBN: 3527632107
Category : Science
Languages : en
Pages : 551
Book Description
Carbon nanotubes (CNTs) have novel properties that make them potentially useful in many applications in nanotechnology, electronics, optics and other fields of materials science. These characteristics include extraordinary strength, unique electrical properties, and the fact that they are efficient heat conductors. Field emission is the emission of electrons from the surface of a condensed phase into another phase due to the presence of high electric fields. CNT field emitters are expected to make a breakthrough in the development of field emission display technology and enable miniature X-ray sources that will find a wide variety of applications in electronic devices, industry, and medical and security examinations. This first monograph on the topic covers all aspects in a concise yet comprehensive manner - from the fundamentals to applications. Divided into four sections, the first part discusses the preparation and characterization of carbon nanotubes, while part two is devoted to the field emission properties of carbon nanotubes, including the electron emission mechanism, characteristics of CNT electron sources, and dynamic behavior of CNTs during operation. Part three highlights field emission from other nanomaterials, such as carbon nanowalls, diamond, and silicon and zinc oxide nanowires, before concluding with frontier R&D applications of CNT emitters, from vacuum electronic devices such as field emission displays, to electron sources in electron microscopes, X-ray sources, and microwave amplifiers. Edited by a pioneer in the field, each chapter is written by recognized experts in the respective fields.
Publisher: John Wiley & Sons
ISBN: 3527632107
Category : Science
Languages : en
Pages : 551
Book Description
Carbon nanotubes (CNTs) have novel properties that make them potentially useful in many applications in nanotechnology, electronics, optics and other fields of materials science. These characteristics include extraordinary strength, unique electrical properties, and the fact that they are efficient heat conductors. Field emission is the emission of electrons from the surface of a condensed phase into another phase due to the presence of high electric fields. CNT field emitters are expected to make a breakthrough in the development of field emission display technology and enable miniature X-ray sources that will find a wide variety of applications in electronic devices, industry, and medical and security examinations. This first monograph on the topic covers all aspects in a concise yet comprehensive manner - from the fundamentals to applications. Divided into four sections, the first part discusses the preparation and characterization of carbon nanotubes, while part two is devoted to the field emission properties of carbon nanotubes, including the electron emission mechanism, characteristics of CNT electron sources, and dynamic behavior of CNTs during operation. Part three highlights field emission from other nanomaterials, such as carbon nanowalls, diamond, and silicon and zinc oxide nanowires, before concluding with frontier R&D applications of CNT emitters, from vacuum electronic devices such as field emission displays, to electron sources in electron microscopes, X-ray sources, and microwave amplifiers. Edited by a pioneer in the field, each chapter is written by recognized experts in the respective fields.
Field Desorption Mass Spectrometry
Author: Laszlo Prokai
Publisher: CRC Press
ISBN: 9780824783037
Category : Science
Languages : en
Pages : 310
Book Description
Publisher: CRC Press
ISBN: 9780824783037
Category : Science
Languages : en
Pages : 310
Book Description
Mass Spectrometry
Author: Jürgen H Gross
Publisher: Springer Science & Business Media
ISBN: 3540407391
Category : Science
Languages : en
Pages : 534
Book Description
Mass Spectrometry is an ideal textbook for students and professionals as well as newcomers to the field. Starting from the very first principles of gas-phase ion chemistry and isotopic properties, the textbook takes the reader through the design of mass analyzers and ionization methods all the way to mass spectral interpretation and coupling techniques. Step-by-step, the reader learns how mass spectrometry works and what it can do. The book comprises a balanced mixture of practice-oriented information and theoretical background. It features a clear layout and a wealth of high-quality figures. Exercises and solutions are located on the Springer Global Web.
Publisher: Springer Science & Business Media
ISBN: 3540407391
Category : Science
Languages : en
Pages : 534
Book Description
Mass Spectrometry is an ideal textbook for students and professionals as well as newcomers to the field. Starting from the very first principles of gas-phase ion chemistry and isotopic properties, the textbook takes the reader through the design of mass analyzers and ionization methods all the way to mass spectral interpretation and coupling techniques. Step-by-step, the reader learns how mass spectrometry works and what it can do. The book comprises a balanced mixture of practice-oriented information and theoretical background. It features a clear layout and a wealth of high-quality figures. Exercises and solutions are located on the Springer Global Web.
Field Ionization Mass Spectrometry
Author: Hans-D. Beckey
Publisher: Elsevier
ISBN: 1483160114
Category : Science
Languages : en
Pages : 362
Book Description
Field Ionization Mass Spectrometry focuses on developments in field ionization (FI) mass spectrometry and describes its applications in physical chemistry, with emphasis on mass spectrometric problems. Physico-chemical problems as well as problems of chemical analysis are considered based on issues such as the probability of field ionization; field dissociation and charge distribution; kinetics of ion decomposition in high fields; negative ions; surface diffusion; activation of FI emitters; and elucidation of the structures of organic compounds. This book is comprised of four chapters and begins with a short review on some of the most important directions of research in FI mass spectrometry. Two main fields of research are discussed: physico-chemical investigations and quantitative analysis or structural determination of organic substances. The next chapter is devoted to focusing and non-focusing sources of FI and covers topics such as methods for production of FI tips and thin wires, together with the use of tips and carbon filaments as FI emitters. The last two chapters focus on the application of the FI mass spectrometer to physico-chemical problems and to quantitative analysis of homologous series of organic substances such as alkanes, alkenes, alkynes, amines, and alcohols. This monograph is intended primarily for chemists and mass spectrometrists.
Publisher: Elsevier
ISBN: 1483160114
Category : Science
Languages : en
Pages : 362
Book Description
Field Ionization Mass Spectrometry focuses on developments in field ionization (FI) mass spectrometry and describes its applications in physical chemistry, with emphasis on mass spectrometric problems. Physico-chemical problems as well as problems of chemical analysis are considered based on issues such as the probability of field ionization; field dissociation and charge distribution; kinetics of ion decomposition in high fields; negative ions; surface diffusion; activation of FI emitters; and elucidation of the structures of organic compounds. This book is comprised of four chapters and begins with a short review on some of the most important directions of research in FI mass spectrometry. Two main fields of research are discussed: physico-chemical investigations and quantitative analysis or structural determination of organic substances. The next chapter is devoted to focusing and non-focusing sources of FI and covers topics such as methods for production of FI tips and thin wires, together with the use of tips and carbon filaments as FI emitters. The last two chapters focus on the application of the FI mass spectrometer to physico-chemical problems and to quantitative analysis of homologous series of organic substances such as alkanes, alkenes, alkynes, amines, and alcohols. This monograph is intended primarily for chemists and mass spectrometrists.
AFOSR.
Author: United States. Air Force. Office of Scientific Research
Publisher:
ISBN:
Category : Research
Languages : en
Pages : 1190
Book Description
Publisher:
ISBN:
Category : Research
Languages : en
Pages : 1190
Book Description
Handbook of Ion Sources
Author: Bernhard Wolf
Publisher: CRC Press
ISBN: 1351829947
Category : Technology & Engineering
Languages : en
Pages : 558
Book Description
The Handbook of Ion Sources delivers the data needed for daily work with ion sources. It also gives information for the selection of a suitable ion source and ion production method for a specific application. The Handbook concentrates on practical aspects and introduces the principle function of ion sources. The basic plasma parameters are defined and discussed. The working principles of various ion sources are explained, and examples of each type of ion source are presented with their operational data. Tables of ion current for various elements and charge states summarize the performance of different ion sources. The problems related to the production of ions of non-gaseous elements are detailed, and data on useful materials for evaporation and ion source construction are summarized. Additional chapters are dedicated to extraction and beam formation, ion beam diagnosis, ion source electronics, and computer codes for extraction, acceleration, and beam transport. Emittance and brilliance are described and space charge effects and neutralization discussed. Various methods for the measurement of current, profile, emittance, and time structure are presented and compared. Intensity limits for these methods are provided for different ion energies. Typical problems related to the operation of ion source plasmas are discussed and practical examples of circuits are given. The influence of high voltage on ion source electronics and possibilities for circuit protection are covered. The generation of microwaves and various microwave equipment are described and special problems related to microwave operation are summarized. The Handbook of Ion Sources is a valuable reference on the subject, of benefit to practitioners and graduate students interested in accelerators, ion implantation, and ion beam techniques.
Publisher: CRC Press
ISBN: 1351829947
Category : Technology & Engineering
Languages : en
Pages : 558
Book Description
The Handbook of Ion Sources delivers the data needed for daily work with ion sources. It also gives information for the selection of a suitable ion source and ion production method for a specific application. The Handbook concentrates on practical aspects and introduces the principle function of ion sources. The basic plasma parameters are defined and discussed. The working principles of various ion sources are explained, and examples of each type of ion source are presented with their operational data. Tables of ion current for various elements and charge states summarize the performance of different ion sources. The problems related to the production of ions of non-gaseous elements are detailed, and data on useful materials for evaporation and ion source construction are summarized. Additional chapters are dedicated to extraction and beam formation, ion beam diagnosis, ion source electronics, and computer codes for extraction, acceleration, and beam transport. Emittance and brilliance are described and space charge effects and neutralization discussed. Various methods for the measurement of current, profile, emittance, and time structure are presented and compared. Intensity limits for these methods are provided for different ion energies. Typical problems related to the operation of ion source plasmas are discussed and practical examples of circuits are given. The influence of high voltage on ion source electronics and possibilities for circuit protection are covered. The generation of microwaves and various microwave equipment are described and special problems related to microwave operation are summarized. The Handbook of Ion Sources is a valuable reference on the subject, of benefit to practitioners and graduate students interested in accelerators, ion implantation, and ion beam techniques.
Atom-Probe Tomography
Author: Michael K. Miller
Publisher: Springer
ISBN: 148997430X
Category : Technology & Engineering
Languages : en
Pages : 437
Book Description
Nanocharacterization by Atom Probe Tomography is a practical guide for researchers interested atomic level characterization of materials with atom probe tomography. Readers will find descriptions of the atom probe instrument and atom probe tomography technique, field ionization, field evaporation and field ion microscopy. The fundamental underlying physics principles are examined, in addition to data reconstruction and visualization, statistical data analysis methods and specimen preparation by electropolishing and FIB-based techniques. A full description of the local electrode atom probe – a new state-of-the-art instrument – is also provided, along with detailed descriptions and limitations of laser pulsing as a method to field evaporate atoms. Valuable coverage of the new ionization theory is also included, which underpins the overall technique.
Publisher: Springer
ISBN: 148997430X
Category : Technology & Engineering
Languages : en
Pages : 437
Book Description
Nanocharacterization by Atom Probe Tomography is a practical guide for researchers interested atomic level characterization of materials with atom probe tomography. Readers will find descriptions of the atom probe instrument and atom probe tomography technique, field ionization, field evaporation and field ion microscopy. The fundamental underlying physics principles are examined, in addition to data reconstruction and visualization, statistical data analysis methods and specimen preparation by electropolishing and FIB-based techniques. A full description of the local electrode atom probe – a new state-of-the-art instrument – is also provided, along with detailed descriptions and limitations of laser pulsing as a method to field evaporate atoms. Valuable coverage of the new ionization theory is also included, which underpins the overall technique.