FGPA Implementation of Artificial Neural Networks for Brain Computer Interface Applications

FGPA Implementation of Artificial Neural Networks for Brain Computer Interface Applications PDF Author:
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 59

Get Book Here

Book Description
Brain-computer interface (BCI) has been extensively studied as a means of restoring sensorimotor functions. The BCI enables individuals to use the electrical activity signals of their own brain that are recorded by electrodes, to control an external device through decoding, translating, and actuating. Most state-of-the-art decoding techniques rely on offline analysis, making it impractical for portable BCI to implement complex computation on hardware. On the other hand, classification capability based on look-up table is limited in onchip implementation. An on-chip intelligent system based on Artificial Neural Network (ANN) has been designed that can effectively perform ECoG data signal decoding of a single finger movement. The main building blocks of this decoding architecture are a hardware friendly version of principle component analysis (PCA) and a multi-layer perceptron (MLP). In this thesis, we mainly focus on the hardware implementation of multi-layer perceptron that can perform movement classification. Training of the neural network is carried out and learned weights are used to model the ANN in Verilog hardware description language and made it FPGA implementable. Various architectures of ANN were considered to optimize the design in terms of performance trade-offs such as area, power, speed and accuracy. Our proposed architecture can predict single finger movements with more than 80% accuracy. This implementation will serve as a pathway to develop a real-time BCI system capable of predicting volitional movement intentions.

FGPA Implementation of Artificial Neural Networks for Brain Computer Interface Applications

FGPA Implementation of Artificial Neural Networks for Brain Computer Interface Applications PDF Author:
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 59

Get Book Here

Book Description
Brain-computer interface (BCI) has been extensively studied as a means of restoring sensorimotor functions. The BCI enables individuals to use the electrical activity signals of their own brain that are recorded by electrodes, to control an external device through decoding, translating, and actuating. Most state-of-the-art decoding techniques rely on offline analysis, making it impractical for portable BCI to implement complex computation on hardware. On the other hand, classification capability based on look-up table is limited in onchip implementation. An on-chip intelligent system based on Artificial Neural Network (ANN) has been designed that can effectively perform ECoG data signal decoding of a single finger movement. The main building blocks of this decoding architecture are a hardware friendly version of principle component analysis (PCA) and a multi-layer perceptron (MLP). In this thesis, we mainly focus on the hardware implementation of multi-layer perceptron that can perform movement classification. Training of the neural network is carried out and learned weights are used to model the ANN in Verilog hardware description language and made it FPGA implementable. Various architectures of ANN were considered to optimize the design in terms of performance trade-offs such as area, power, speed and accuracy. Our proposed architecture can predict single finger movements with more than 80% accuracy. This implementation will serve as a pathway to develop a real-time BCI system capable of predicting volitional movement intentions.

Advances in Computational Intelligence

Advances in Computational Intelligence PDF Author: Joan Cabestany
Publisher: Springer
ISBN: 3642215017
Category : Computers
Languages : en
Pages : 601

Get Book Here

Book Description
This two-volume set LNCS 6691 and 6692 constitutes the refereed proceedings of the 11th International Work-Conference on Artificial Neural Networks, IWANN 2011, held in Torremolinos-Málaga, Spain, in June 2011. The 154 revised papers were carefully reviewed and selected from 202 submissions for presentation in two volumes. The first volume includes 69 papers organized in topical sections on mathematical and theoretical methods in computational intelligence; learning and adaptation; bio-inspired systems and neuro-engineering; hybrid intelligent systems; applications of computational intelligence; new applications of brain-computer interfaces; optimization algorithms in graphic processing units; computing languages with bio-inspired devices and multi-agent systems; computational intelligence in multimedia processing; and biologically plausible spiking neural processing.

FPGA Implementations of Neural Networks

FPGA Implementations of Neural Networks PDF Author: Amos R. Omondi
Publisher: Springer Science & Business Media
ISBN: 0387284877
Category : Technology & Engineering
Languages : en
Pages : 365

Get Book Here

Book Description
During the 1980s and early 1990s there was signi?cant work in the design and implementation of hardware neurocomputers. Nevertheless, most of these efforts may be judged to have been unsuccessful: at no time have have ha- ware neurocomputers been in wide use. This lack of success may be largely attributed to the fact that earlier work was almost entirely aimed at developing custom neurocomputers, based on ASIC technology, but for such niche - eas this technology was never suf?ciently developed or competitive enough to justify large-scale adoption. On the other hand, gate-arrays of the period m- tioned were never large enough nor fast enough for serious arti?cial-neur- network (ANN) applications. But technology has now improved: the capacity and performance of current FPGAs are such that they present a much more realistic alternative. Consequently neurocomputers based on FPGAs are now a much more practical proposition than they have been in the past. This book summarizes some work towards this goal and consists of 12 papers that were selected, after review, from a number of submissions. The book is nominally divided into three parts: Chapters 1 through 4 deal with foundational issues; Chapters 5 through 11 deal with a variety of implementations; and Chapter 12 looks at the lessons learned from a large-scale project and also reconsiders design issues in light of current and future technology.

Applications of Brain-Computer Interfaces in Intelligent Technologies

Applications of Brain-Computer Interfaces in Intelligent Technologies PDF Author: Szczepan Paszkiel
Publisher: Springer Nature
ISBN: 3031055012
Category : Technology & Engineering
Languages : en
Pages : 117

Get Book Here

Book Description
The BCI technology finds newer and newer implementations. Year by year, the number of publications in this field grows exponentially. This book attempts to describe the implementation of the brain-computer technology based on both STM32 and Arduino microcontrollers. In addition, the application of BCI technology in the field of intelligent houses, robotic lines as well as in the field of bionic prostheses was presented. One of the chapters of the monograph also discusses the issue of fMRI in the context of the possibility of analyzing images made as part of fMRI through solutions based on machine learning. A practical implementation of the TensorFlow framework was presented. The fMRI technique is also often implemented in BCI solutions. The conducted literature studies show that the technology of BCI is undoubtedly a technology of the future. However, there is a need for continuous development of biomedical signal processing methods in order to obtain the most efficient implementations in the case of non-invasive implementation of BCI technology based on EEG. The further development of BCI technology has a huge impact on the techniques of rehabilitation of people with disabilities. Nowadays, wheelchairs are being constructed, thanks to which a disabled person is physically able to direct his position in a certain direction and at a certain speed. Thanks to BCI, it is also possible to create an individual speech synthesizer, with the help of which a paralyzed person will be able to communicate with the outside world. New limb prostheses that will replace the lost locomotor system in almost one hundred percent are still being developed. Some prostheses are connected to the human nervous system, thanks to which they are able to send feedback to our brain about the shape, hardness and temperature of the object held in the artificial limb.

The Application of Artificial Intelligence in Brain-Computer Interface and Neural System Rehabilitation

The Application of Artificial Intelligence in Brain-Computer Interface and Neural System Rehabilitation PDF Author: Fangzhou Xu
Publisher: Frontiers Media SA
ISBN: 2832539025
Category : Science
Languages : en
Pages : 232

Get Book Here

Book Description


FPGA Implementation of a PC-AT Computer to Neural Network Interface

FPGA Implementation of a PC-AT Computer to Neural Network Interface PDF Author: Jeffrey Richard Lewis
Publisher:
ISBN:
Category : Computer interfaces
Languages : en
Pages : 104

Get Book Here

Book Description


The NeuroProcessor

The NeuroProcessor PDF Author: Yevgeny Perelman
Publisher: Springer Science & Business Media
ISBN: 1402087268
Category : Technology & Engineering
Languages : en
Pages : 126

Get Book Here

Book Description
Understanding brain structure and principles of operation is one of the major challengesofmodernscience.SincetheexperimentsbyGalvanionfrogmuscle contraction in 1792, it is known that electrical impulses lie at the core of the brain activity. The technology of neuro-electronic interfacing, besides its importance for neurophysiological research, has also clinical potential, so called neuropr- thetics. Sensory prostheses are intended to feed sensory data into patient’s brain by means of neurostimulation. Cochlear prostheses [1] are one example of sensory prostheses that are already used in patients. Retinal prostheses are currently under research [2]. Recent neurophysiological experiments [3, 4] show that brain signals recorded from motor cortex carry information regarding the movement of subject’s limbs (Fig. 1.1). These signals can be further used to control ext- nal machines [4] that will replace missing limbs, opening the ?eld of motor prosthetics, devices that will restore lost limbs or limb control. Fig. 1.1. Robotic arm controlled by monkey motor cortex signals. MotorLab, U- versity of Pittsburgh. Prof Andy Schwartz, U. Pitt 2 1 Introduction Another group of prostheses would provide treatment for brain diseases, such as prevention of epileptic seizure or the control of tremor associated with Parkinson disease [5]. Brain implants for treatment of Epilepsy and Parkinson symptoms (Fig. 1.2) are already available commercially [6, 7]. Fig. 1.2. Implantable device for Epilepsy seizures treatment [7]. Cyberonics, Inc.

Neural Interface: Frontiers and Applications

Neural Interface: Frontiers and Applications PDF Author: Xiaoxiang Zheng
Publisher: Springer Nature
ISBN: 9811320500
Category : Medical
Languages : en
Pages : 250

Get Book Here

Book Description
This book focuses on the frontiers of neural interface technology, including hardware, software, neural decoding and encoding, control systems, and system integration. It also discusses applications for neuroprosthetics, neural diseases and neurorobotics, and the toolkits for basic neuroscience. A neural interface establishes a direct communication channel with the central or peripheral nervous system (CNS or PNS), and enables the nervous system to interact directly with the external devices. Recent advances in neuroscience and engineering are speeding up neural interface technology, paving the way for assisting, augmenting, repairing or restoring sensorimotor and other cognitive functions impaired due to neurological disease or trauma, and so improving the quality of life of those affected. Neural interfaces are now being explored in applications as diverse as rehabilitation, accessibility, gaming, education, recreation, robotics and human enhancement. Neural interfaces also represent a powerful tool to address fundamental questions in neuroscience. Recent decades have witnessed tremendous advances in the field, with a huge impact not only in the development of neuroprosthetics, but also in our basic understanding of brain function. Neural interface technology can be seen as a bridge across the traditional engineering and basic neuroscience. This book provides researchers, graduate and upper undergraduate students from a wide range of disciplines with a cutting-edge and comprehensive summary of neural interface engineering research.

Engineering Applications of FPGAs

Engineering Applications of FPGAs PDF Author: Esteban Tlelo-Cuautle
Publisher: Springer
ISBN: 9783319816791
Category : Technology & Engineering
Languages : en
Pages : 222

Get Book Here

Book Description
This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. The whole book provides a practical guide to implementing a variety of engineering applications from VHDL programming and co-simulation issues, to FPGA realizations of chaos generators, ANNs for chaotic time-series prediction, RNGs and chaotic secure communications for image transmission.

Neural Approaches to Dynamics of Signal Exchanges

Neural Approaches to Dynamics of Signal Exchanges PDF Author: Anna Esposito
Publisher: Springer Nature
ISBN: 9811389500
Category : Technology & Engineering
Languages : en
Pages : 525

Get Book Here

Book Description
The book presents research that contributes to the development of intelligent dialog systems to simplify diverse aspects of everyday life, such as medical diagnosis and entertainment. Covering major thematic areas: machine learning and artificial neural networks; algorithms and models; and social and biometric data for applications in human–computer interfaces, it discusses processing of audio-visual signals for the detection of user-perceived states, the latest scientific discoveries in processing verbal (lexicon, syntax, and pragmatics), auditory (voice, intonation, vocal expressions) and visual signals (gestures, body language, facial expressions), as well as algorithms for detecting communication disorders, remote health-status monitoring, sentiment and affect analysis, social behaviors and engagement. Further, it examines neural and machine learning algorithms for the implementation of advanced telecommunication systems, communication with people with special needs, emotion modulation by computer contents, advanced sensors for tracking changes in real-life and automatic systems, as well as the development of advanced human–computer interfaces. The book does not focus on solving a particular problem, but instead describes the results of research that has positive effects in different fields and applications.