Author: Uwe Schroeder
Publisher: Woodhead Publishing
ISBN: 0081024312
Category : Technology & Engineering
Languages : en
Pages : 572
Book Description
Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized. - Explores all aspects of the structural and electrical properties of HfO2, including processes, modelling and implementation into semiconductor devices - Considers potential applications including FeCaps, FeFETs, NCFETs, FTJs and more - Provides comparison of an emerging ferroelectric material to conventional ferroelectric materials with insights to the problems of downscaling that conventional ferroelectrics face
Ferroelectricity in Doped Hafnium Oxide
Author: Uwe Schroeder
Publisher: Woodhead Publishing
ISBN: 0081024312
Category : Technology & Engineering
Languages : en
Pages : 572
Book Description
Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized. - Explores all aspects of the structural and electrical properties of HfO2, including processes, modelling and implementation into semiconductor devices - Considers potential applications including FeCaps, FeFETs, NCFETs, FTJs and more - Provides comparison of an emerging ferroelectric material to conventional ferroelectric materials with insights to the problems of downscaling that conventional ferroelectrics face
Publisher: Woodhead Publishing
ISBN: 0081024312
Category : Technology & Engineering
Languages : en
Pages : 572
Book Description
Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized. - Explores all aspects of the structural and electrical properties of HfO2, including processes, modelling and implementation into semiconductor devices - Considers potential applications including FeCaps, FeFETs, NCFETs, FTJs and more - Provides comparison of an emerging ferroelectric material to conventional ferroelectric materials with insights to the problems of downscaling that conventional ferroelectrics face
Ferroelectricity in Doped Hafnium Oxide
Author: Uwe Schroeder
Publisher: Woodhead Publishing
ISBN: 9780081024300
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized.
Publisher: Woodhead Publishing
ISBN: 9780081024300
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized.
Ferroelectricity in Doped Hafnium Oxide
Author: Uwe Schroeder
Publisher: Woodhead Publishing
ISBN: 9780443291821
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, neuromorphic applications, IR sensors, energy storage and harvesting, and solid-state cooling. This book covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HfO2 and standard ferroelectric materials. Finally, HfO2-based devices are summarized. The new edition extends the first edition in the following areas: Detailed discussion of the causes and dependencies for ferroelectric properties; Broader coverage of all known deposition techniques; Comparison of ferroelectric with antiferroelectric, piezoelectric, and pyroelectric properties; More aspects on switching and field cycling behaviour; Wider overview of simulation results; Further applications of new HfO2-based materials for energy storage, and pyroelectric, piezoelectric, and neuromorphic applications
Publisher: Woodhead Publishing
ISBN: 9780443291821
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, neuromorphic applications, IR sensors, energy storage and harvesting, and solid-state cooling. This book covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HfO2 and standard ferroelectric materials. Finally, HfO2-based devices are summarized. The new edition extends the first edition in the following areas: Detailed discussion of the causes and dependencies for ferroelectric properties; Broader coverage of all known deposition techniques; Comparison of ferroelectric with antiferroelectric, piezoelectric, and pyroelectric properties; More aspects on switching and field cycling behaviour; Wider overview of simulation results; Further applications of new HfO2-based materials for energy storage, and pyroelectric, piezoelectric, and neuromorphic applications
Ferroelectric Thin Films
Author: Masanori Okuyama
Publisher: Springer Science & Business Media
ISBN: 9783540241638
Category : Computers
Languages : en
Pages : 272
Book Description
Ferroelectric thin films continue to attract much attention due to their developing applications in memory devices, FeRAM, infrared sensors, piezoelectric sensors and actuators. This book, aimed at students, researchers and developers, gives detailed information about the basic properties of these materials and the associated device physics. The contributing authors are acknowledged experts in the field.
Publisher: Springer Science & Business Media
ISBN: 9783540241638
Category : Computers
Languages : en
Pages : 272
Book Description
Ferroelectric thin films continue to attract much attention due to their developing applications in memory devices, FeRAM, infrared sensors, piezoelectric sensors and actuators. This book, aimed at students, researchers and developers, gives detailed information about the basic properties of these materials and the associated device physics. The contributing authors are acknowledged experts in the field.
Principles and Applications of Ferroelectrics and Related Materials
Author: M. E. Lines
Publisher: Oxford University Press
ISBN: 9780198507789
Category : Science
Languages : en
Pages : 700
Book Description
This is a standard work on ferroelectrics.
Publisher: Oxford University Press
ISBN: 9780198507789
Category : Science
Languages : en
Pages : 700
Book Description
This is a standard work on ferroelectrics.
Ferroelectric-Gate Field Effect Transistor Memories
Author: Byung-Eun Park
Publisher: Springer Nature
ISBN: 9811512124
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has been most actively progressed since the late 1980s and reached modest mass production for specific application since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims the ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handicaps of cross-talk for random accessibility and short retention time. This book aims to provide the readers with development history, technical issues, fabrication methodologies, and promising applications of FET-type ferroelectric memory devices, presenting a comprehensive review of past, present, and future technologies. The topics discussed will lead to further advances in large-area electronics implemented on glass, plastic or paper substrates as well as in conventional Si electronics. The book is composed of chapters written by leading researchers in ferroelectric materials and related device technologies, including oxide and organic ferroelectric thin films.
Publisher: Springer Nature
ISBN: 9811512124
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has been most actively progressed since the late 1980s and reached modest mass production for specific application since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims the ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handicaps of cross-talk for random accessibility and short retention time. This book aims to provide the readers with development history, technical issues, fabrication methodologies, and promising applications of FET-type ferroelectric memory devices, presenting a comprehensive review of past, present, and future technologies. The topics discussed will lead to further advances in large-area electronics implemented on glass, plastic or paper substrates as well as in conventional Si electronics. The book is composed of chapters written by leading researchers in ferroelectric materials and related device technologies, including oxide and organic ferroelectric thin films.
Pulsed Laser Deposition of Thin Films
Author: Robert Eason
Publisher: John Wiley & Sons
ISBN: 0470052112
Category : Science
Languages : en
Pages : 754
Book Description
Edited by major contributors to the field, this text summarizes current or newly emerging pulsed laser deposition application areas. It spans the field of optical devices, electronic materials, sensors and actuators, biomaterials, and organic polymers. Every scientist, technologist and development engineer who has a need to grow and pattern, to apply and use thin film materials will regard this book as a must-have resource.
Publisher: John Wiley & Sons
ISBN: 0470052112
Category : Science
Languages : en
Pages : 754
Book Description
Edited by major contributors to the field, this text summarizes current or newly emerging pulsed laser deposition application areas. It spans the field of optical devices, electronic materials, sensors and actuators, biomaterials, and organic polymers. Every scientist, technologist and development engineer who has a need to grow and pattern, to apply and use thin film materials will regard this book as a must-have resource.
Atomic Layer Deposition for Semiconductors
Author: Cheol Seong Hwang
Publisher: Springer Science & Business Media
ISBN: 146148054X
Category : Science
Languages : en
Pages : 266
Book Description
Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.
Publisher: Springer Science & Business Media
ISBN: 146148054X
Category : Science
Languages : en
Pages : 266
Book Description
Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.
Lead-Free Piezoelectrics
Author: Shashank Priya
Publisher: Springer Science & Business Media
ISBN: 1441995986
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
Ecological restrictions in many parts of the world are demanding the elimination of Pb from all consumer items. At this moment in the piezoelectric ceramics industry, there is no issue of more importance than the transition to lead-free materials. The goal of Lead-Free Piezoelectrics is to provide a comprehensive overview of the fundamentals and developments in the field of lead-free materials and products to leading researchers in the world. The text presents chapters on demonstrated applications of the lead-free materials, which will allow readers to conceptualize the present possibilities and will be useful for both students and professionals conducting research on ferroelectrics, piezoelectrics, smart materials, lead-free materials, and a variety of applications including sensors, actuators, ultrasonic transducers and energy harvesters.
Publisher: Springer Science & Business Media
ISBN: 1441995986
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
Ecological restrictions in many parts of the world are demanding the elimination of Pb from all consumer items. At this moment in the piezoelectric ceramics industry, there is no issue of more importance than the transition to lead-free materials. The goal of Lead-Free Piezoelectrics is to provide a comprehensive overview of the fundamentals and developments in the field of lead-free materials and products to leading researchers in the world. The text presents chapters on demonstrated applications of the lead-free materials, which will allow readers to conceptualize the present possibilities and will be useful for both students and professionals conducting research on ferroelectrics, piezoelectrics, smart materials, lead-free materials, and a variety of applications including sensors, actuators, ultrasonic transducers and energy harvesters.
Ferroelectric Random Access Memories
Author: Hiroshi Ishiwara
Publisher: Springer Science & Business Media
ISBN: 9783540407188
Category : Computers
Languages : en
Pages : 316
Book Description
The book consists of 5 parts: (1) ferroelectric thin films, (2) deposition and characterization methods, (3) fabrication process and circuit design, (4) advanced-type memories, and (5) applications and future prospects; each part is further divided into several chapters. Because of the wide range of topics discussed, each chapter in this book was written by one of the best authors knowing the specific topic very well.
Publisher: Springer Science & Business Media
ISBN: 9783540407188
Category : Computers
Languages : en
Pages : 316
Book Description
The book consists of 5 parts: (1) ferroelectric thin films, (2) deposition and characterization methods, (3) fabrication process and circuit design, (4) advanced-type memories, and (5) applications and future prospects; each part is further divided into several chapters. Because of the wide range of topics discussed, each chapter in this book was written by one of the best authors knowing the specific topic very well.