Federated Learning for Digital Healthcare Systems

Federated Learning for Digital Healthcare Systems PDF Author: Agbotiname Lucky Imoize
Publisher: Elsevier
ISBN: 0443138966
Category : Computers
Languages : en
Pages : 459

Get Book Here

Book Description
Federated Learning for Digital Healthcare Systems critically examines the key factors that contribute to the problem of applying machine learning in healthcare systems and investigates how federated learning can be employed to address the problem. The book discusses, examines, and compares the applications of federated learning solutions in emerging digital healthcare systems, providing a critical look in terms of the required resources, computational complexity, and system performance. In the first section, chapters examine how to address critical security and privacy concerns and how to revamp existing machine learning models. In subsequent chapters, the book's authors review recent advances to tackle emerging efficient and lightweight algorithms and protocols to reduce computational overheads and communication costs in wireless healthcare systems. Consideration is also given to government and economic regulations as well as legal considerations when federated learning is applied to digital healthcare systems. - Provides insights into real-world scenarios of the design, development, deployment, application, management, and benefits of federated learning in emerging digital healthcare systems - Highlights the need to design efficient federated learning-based algorithms to tackle the proliferating security and patient privacy issues in digital healthcare systems - Reviews the latest research, along with practical solutions and applications developed by global experts from academia and industry

Federated Learning for Digital Healthcare Systems

Federated Learning for Digital Healthcare Systems PDF Author: Agbotiname Lucky Imoize
Publisher: Elsevier
ISBN: 0443138966
Category : Computers
Languages : en
Pages : 459

Get Book Here

Book Description
Federated Learning for Digital Healthcare Systems critically examines the key factors that contribute to the problem of applying machine learning in healthcare systems and investigates how federated learning can be employed to address the problem. The book discusses, examines, and compares the applications of federated learning solutions in emerging digital healthcare systems, providing a critical look in terms of the required resources, computational complexity, and system performance. In the first section, chapters examine how to address critical security and privacy concerns and how to revamp existing machine learning models. In subsequent chapters, the book's authors review recent advances to tackle emerging efficient and lightweight algorithms and protocols to reduce computational overheads and communication costs in wireless healthcare systems. Consideration is also given to government and economic regulations as well as legal considerations when federated learning is applied to digital healthcare systems. - Provides insights into real-world scenarios of the design, development, deployment, application, management, and benefits of federated learning in emerging digital healthcare systems - Highlights the need to design efficient federated learning-based algorithms to tackle the proliferating security and patient privacy issues in digital healthcare systems - Reviews the latest research, along with practical solutions and applications developed by global experts from academia and industry

Federated Learning

Federated Learning PDF Author: Qiang Yang
Publisher: Springer Nature
ISBN: 3030630765
Category : Computers
Languages : en
Pages : 291

Get Book Here

Book Description
This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”

Federated Learning Systems

Federated Learning Systems PDF Author: Muhammad Habib ur Rehman
Publisher: Springer Nature
ISBN: 3030706044
Category : Technology & Engineering
Languages : en
Pages : 207

Get Book Here

Book Description
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.

Humanity Driven AI

Humanity Driven AI PDF Author: Fang Chen
Publisher: Springer Nature
ISBN: 3030721884
Category : Computers
Languages : en
Pages : 330

Get Book Here

Book Description
Artificial Intelligence (AI) is changing the world around us, and it is changing the way people are living, working, and entertaining. As a result, demands for understanding how AI functions to achieve and enhance human goals from basic needs to high level well-being (whilst maintaining human health) are increasing. This edited book systematically investigates how AI facilitates enhancing human needs in the digital age, and reports on the state-of-the-art advances in theories, techniques, and applications of humanity driven AI. Consisting of five parts, it covers the fundamentals of AI and humanity, AI for productivity, AI for well-being, AI for sustainability, and human-AI partnership. Humanity Driven AI creates an important opportunity to not only promote AI techniques from a humanity perspective, but also to invent novel AI applications to benefit humanity. It aims to serve as the dedicated source for the theories, methodologies, and applications on humanity driven AI, establishing state-of-the-art research, and providing a ground-breaking book for graduate students, research professionals, and AI practitioners.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare PDF Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385

Get Book Here

Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Digital Infrastructure for the Learning Health System

Digital Infrastructure for the Learning Health System PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309154162
Category : Medical
Languages : en
Pages : 336

Get Book Here

Book Description
Like many other industries, health care is increasingly turning to digital information and the use of electronic resources. The Institute of Medicine's Roundtable on Value & Science-Driven Health Care hosted three workshops to explore current efforts and opportunities to accelerate progress in improving health and health care with information technology systems.

Blockchain Technology in Healthcare Applications

Blockchain Technology in Healthcare Applications PDF Author: Bharat Bhushan
Publisher: CRC Press
ISBN: 9781003224075
Category : Computers
Languages : en
Pages : 376

Get Book Here

Book Description
"Tremendous growth in healthcare treatment techniques and methods has led to the emergence of numerous storage and communication problems and need for security among vendors and patients. This book brings together latest applications and state-of-the-art developments in healthcare sector using Blockchain technology. It explains how blockchain can enhance security, privacy, interoperability, and data accessibility including AI with blockchains, blockchains for medical imaging to supply chain management, and centralized management/clearing houses alongside DLT. Features: Includes theoretical concepts, empirical studies and detailed overview of various aspects related to development of healthcare applications from a reliable, trusted, and secure data transmission perspective. Provide insights on business applications of Blockchain, particularly in the healthcare sector. Explores how Blockchain can solve the transparency issues in the clinical research. Discusses AI with Blockchains, ranging from medical imaging to supply chain management. Reviews benchmark testing of AI with Blockchains and its impacts upon medical uses. This book aims at researchers and graduate students in healthcare information systems, computer and electrical engineering"--

Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging PDF Author: Erik R. Ranschaert
Publisher: Springer
ISBN: 3319948784
Category : Medical
Languages : en
Pages : 369

Get Book Here

Book Description
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.

Big Data over Networks

Big Data over Networks PDF Author: Shuguang Cui
Publisher: Cambridge University Press
ISBN: 1107099005
Category : Computers
Languages : en
Pages : 459

Get Book Here

Book Description
Examines the crucial interaction between big data and communication, social and biological networks using critical mathematical tools and state-of-the-art research.

Requirements Engineering for Digital Health

Requirements Engineering for Digital Health PDF Author: Samuel A. Fricker
Publisher: Springer
ISBN: 3319097989
Category : Technology & Engineering
Languages : en
Pages : 209

Get Book Here

Book Description
Healthcare and well-being have captured the attention of established software companies, start-ups, and investors. Software is starting to play a central role for addressing the problems of the aging society and the escalating cost of healthcare services. Enablers of such digital health are a growing number of sensors for sensing the human body and communication infrastructure for remote meetings, data sharing, and messaging. The challenge that lies in front of us is how to effectively make use of these capabilities, for example to empower patients and to free the scarce resources of medical personnel. Requirements engineering is the process by which the capabilities of a software product are aligned with stakeholder needs and a shared understanding between the stakeholders and development team established. This book provides guide for what to look for and do when inquiring and specifying software that targets healthcare and well-being, helping readers avoid the pitfalls of the highly regulated and sensible healthcare domain are and how they can be overcome. This book brings together the knowledge of 22 researchers, engineers, lawyers, and CEOs that have experience in the development of digital health solutions. It represents a unique line-up of best practices and recommendations of how to engineer requirements for digital health. In particular the book presents: · The area of digital health, e-health, and m-health · Best practice for requirements engineering based on evidence from a large number of projects · Practical step-by-step guidelines, examples, and lessons-learned for working with laws, regulations, ethical issues, interoperability, user experience, security, and privacy · How to put these many concerns together for engineering the requirements of a digital health solution and for scaling a digital health product For anybody who intends to develop software for digital health, this book is an introduction and reference with a wealth of actionable insights. For students interested in understanding how to apply software to healthcare, the text introduces key topics and guides further studies with references to important literature.